open-mmlab / mmaction2

OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
https://mmaction2.readthedocs.io
Apache License 2.0
4.3k stars 1.25k forks source link

AttributeError: 'FasterRCNN' object has no attribute 'CLASSES' #2239

Open Better369 opened 1 year ago

Better369 commented 1 year ago

Environment mmaction2: 1.0.0rc2 mmcv: 2.0.0rc4 mmdet: 3.0.0rc5 mmengine: 0.5.0 mmpose: 1.0.0rc0 cuda: 11.0 torch: 1.8.0

Error I get the following error ntu_pose_extraction.py running it: 1c4feb3042f9bc97b7448a2884ed61c

Complete code:

Copyright (c) OpenMMLab. All rights reserved.

import abc import argparse import os import os.path as osp import random as rd import shutil import string from collections import defaultdict

import cv2 import mmcv import numpy as np

补充

from mmdet.utils import register_all_modules register_all_modules()

try: from mmdet.apis import inference_detector, init_detector except (ImportError, ModuleNotFoundError): raise ImportError('Failed to import inference_detector and ' 'init_detector form mmdet.apis. These apis are ' 'required in this script! ')

try:

from mmpose.apis import inference_top_down_pose_model, init_pose_model

from mmpose.apis import inference_topdown, init_model

except (ImportError, ModuleNotFoundError): raise ImportError('Failed to import inference_top_down_pose_model and ' 'init_pose_model form mmpose.apis. These apis are ' 'required in this script! ')

mmdet_root = 'D:\Engineer\mmaction2-1.x\mmaction2-1.x\mmdetection-3.x\mmdetection-3.x' mmpose_root = 'D:\Engineer\mmaction2-1.x\mmaction2-1.x\mmpose-1.x\mmpose-1.x'

args = abc.abstractproperty()

args.det_config = f'{mmdet_root}/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py' # noqa: E501

args.det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person/faster_rcnn_r50_fpn_1x_coco-person_20201216_175929-d022e227.pth' # noqa: E501

args.det_config = f'{mmdet_root}/configs/faster_rcnn/faster-rcnn_r50-caffe_fpn_ms-1x_coco-person.py' # noqa: E501 args.det_checkpoint = 'D:\Engineer\mmaction2-1.x\mmaction2-1.x\weight\faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa: E501

args.det_score_thr = 0.5

args.pose_config = f'{mmpose_root}/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py' # noqa: E501

args.pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth' # noqa: E501

args.pose_config = f'{mmpose_root}\configs\body_2d_keypoint\topdown_heatmap\coco\td-hm_hrnet-w32_8xb64-210e_coco-256x192.py' # noqa: E501 args.pose_checkpoint = 'D:\Engineer\mmaction2-1.x\mmaction2-1.x\weight\hrnet_w32-36af842e.pth' # noqa: E501

def gen_id(size=8): chars = string.asciiuppercase + string.digits return ''.join(rd.choice(chars) for in range(size))

def extract_frame(video_path): dname = gen_id() os.makedirs(dname, exist_ok=True) frametmpl = osp.join(dname, 'img{:05d}.jpg') vid = cv2.VideoCapture(video_path) frame_paths = [] flag, frame = vid.read() cnt = 0 while flag: frame_path = frame_tmpl.format(cnt + 1) frame_paths.append(frame_path)

    cv2.imwrite(frame_path, frame)
    cnt += 1
    flag, frame = vid.read()

return frame_paths

def detection_inference(args, frame_paths): model = init_detector(args.det_config, args.det_checkpoint, args.device) assert model.CLASSES[0] == 'person', ('We require you to use a detector ' 'trained on COCO') # CLASSES results = [] print('Performing Human Detection for each frame') prog_bar = mmcv.ProgressBar(len(frame_paths)) for frame_path in frame_paths: result = inference_detector(model, frame_path)

We only keep human detections with score larger than det_score_thr

    result = result[0][result[0][:, 4] >= args.det_score_thr]
    results.append(result)
    prog_bar.update()
return results

def intersection(b0, b1): l, r = max(b0[0], b1[0]), min(b0[2], b1[2]) u, d = max(b0[1], b1[1]), min(b0[3], b1[3]) return max(0, r - l) * max(0, d - u)

def iou(b0, b1): i = intersection(b0, b1) u = area(b0) + area(b1) - i return i / u

def area(b): return (b[2] - b[0]) * (b[3] - b[1])

def removedup(bbox):

def inside(box0, box1, threshold=0.8):
    return intersection(box0, box1) / area(box0) > threshold

num_bboxes = bbox.shape[0]
if num_bboxes == 1 or num_bboxes == 0:
    return bbox
valid = []
for i in range(num_bboxes):
    flag = True
    for j in range(num_bboxes):
        if i != j and inside(bbox[i],
                             bbox[j]) and bbox[i][4] <= bbox[j][4]:
            flag = False
            break
    if flag:
        valid.append(i)
return bbox[valid]

def is_easy_example(det_results, num_person): threshold = 0.95

def thre_bbox(bboxes, threshold=threshold):
    shape = [sum(bbox[:, -1] > threshold) for bbox in bboxes]
    ret = np.all(np.array(shape) == shape[0])
    return shape[0] if ret else -1

if thre_bbox(det_results) == num_person:
    det_results = [x[x[..., -1] > 0.95] for x in det_results]
    return True, np.stack(det_results)
return False, thre_bbox(det_results)

def bbox2tracklet(bbox): iou_thre = 0.6 tracklet_id = -1 tracklet_st_frame = {} tracklets = defaultdict(list) for t, box in enumerate(bbox): for idx in range(box.shape[0]): matched = False for tlet_id in range(tracklet_id, -1, -1): cond1 = iou(tracklets[tlet_id][-1][-1], box[idx]) >= iou_thre cond2 = ( t - tracklet_st_frame[tlet_id] - len(tracklets[tlet_id]) < 10) cond3 = tracklets[tlet_id][-1][0] != t if cond1 and cond2 and cond3: matched = True tracklets[tlet_id].append((t, box[idx])) break if not matched: tracklet_id += 1 tracklet_st_frame[tracklet_id] = t tracklets[tracklet_id].append((t, box[idx])) return tracklets

def drop_tracklet(tracklet): tracklet = {k: v for k, v in tracklet.items() if len(v) > 5}

def meanarea(track):
    boxes = np.stack([x[1] for x in track]).astype(np.float32)
    areas = (boxes[..., 2] - boxes[..., 0]) * (
        boxes[..., 3] - boxes[..., 1])
    return np.mean(areas)

tracklet = {k: v for k, v in tracklet.items() if meanarea(v) > 5000}
return tracklet

def distance_tracklet(tracklet): dists = {} for k, v in tracklet.items(): bboxes = np.stack([x[1] for x in v]) c_x = (bboxes[..., 2] + bboxes[..., 0]) / 2. c_y = (bboxes[..., 3] + bboxes[..., 1]) / 2. c_x -= 480 c_y -= 270 c = np.concatenate([c_x[..., None], c_y[..., None]], axis=1) dist = np.linalg.norm(c, axis=1) dists[k] = np.mean(dist) return dists

def tracklet2bbox(track, num_frame):

assign_prev

bbox = np.zeros((num_frame, 5))
trackd = {}
for k, v in track:
    bbox[k] = v
    trackd[k] = v
for i in range(num_frame):
    if bbox[i][-1] <= 0.5:
        mind = np.Inf
        for k in trackd:
            if np.abs(k - i) < mind:
                mind = np.abs(k - i)
        bbox[i] = bbox[k]
return bbox

def tracklets2bbox(tracklet, num_frame): dists = distance_tracklet(tracklet) sorted_inds = sorted(dists, key=lambda x: dists[x]) dist_thre = np.Inf for i in sorted_inds: if len(tracklet[i]) >= num_frame / 2: dist_thre = 2 * dists[i] break

dist_thre = max(50, dist_thre)

bbox = np.zeros((num_frame, 5))
bboxd = {}
for idx in sorted_inds:
    if dists[idx] < dist_thre:
        for k, v in tracklet[idx]:
            if bbox[k][-1] < 0.01:
                bbox[k] = v
                bboxd[k] = v
bad = 0
for idx in range(num_frame):
    if bbox[idx][-1] < 0.01:
        bad += 1
        mind = np.Inf
        mink = None
        for k in bboxd:
            if np.abs(k - idx) < mind:
                mind = np.abs(k - idx)
                mink = k
        bbox[idx] = bboxd[mink]
return bad, bbox

def bboxes2bbox(bbox, num_frame): ret = np.zeros((num_frame, 2, 5)) for t, item in enumerate(bbox): if item.shape[0] <= 2: ret[t, :item.shape[0]] = item else: inds = sorted( list(range(item.shape[0])), key=lambda x: -item[x, -1]) ret[t] = item[inds[:2]] for t in range(num_frame): if ret[t, 0, -1] <= 0.01: ret[t] = ret[t - 1] elif ret[t, 1, -1] <= 0.01: if t: if ret[t - 1, 0, -1] > 0.01 and ret[t - 1, 1, -1] > 0.01: if iou(ret[t, 0], ret[t - 1, 0]) > iou( ret[t, 0], ret[t - 1, 1]): ret[t, 1] = ret[t - 1, 1] else: ret[t, 1] = ret[t - 1, 0] return ret

def ntu_det_postproc(vid, det_results): det_results = [removedup(x) for x in det_results] label = int(vid.split('/')[-1].split('A')[1][:3]) mpaction = list(range(50, 61)) + list(range(106, 121)) n_person = 2 if label in mpaction else 1 is_easy, bboxes = is_easy_example(det_results, n_person) if is_easy: print('\nEasy Example') return bboxes

tracklets = bbox2tracklet(det_results)
tracklets = drop_tracklet(tracklets)

print(f'\nHard {n_person}-person Example, found {len(tracklets)} tracklet')
if n_person == 1:
    if len(tracklets) == 1:
        tracklet = list(tracklets.values())[0]
        det_results = tracklet2bbox(tracklet, len(det_results))
        return np.stack(det_results)
    else:
        bad, det_results = tracklets2bbox(tracklets, len(det_results))
        return det_results
# n_person is 2
if len(tracklets) <= 2:
    tracklets = list(tracklets.values())
    bboxes = []
    for tracklet in tracklets:
        bboxes.append(tracklet2bbox(tracklet, len(det_results))[:, None])
    bbox = np.concatenate(bboxes, axis=1)
    return bbox
else:
    return bboxes2bbox(det_results, len(det_results))

def pose_inference(args, frame_paths, det_results): model = init_pose_model(args.pose_config, args.pose_checkpoint, args.device) print('Performing Human Pose Estimation for each frame') prog_bar = mmcv.ProgressBar(len(frame_paths))

num_frame = len(det_results)
num_person = max([len(x) for x in det_results])
kp = np.zeros((num_person, num_frame, 17, 3), dtype=np.float32)

for i, (f, d) in enumerate(zip(frame_paths, det_results)):
    # Align input format
    d = [dict(bbox=x) for x in list(d) if x[-1] > 0.5]
    pose = inference_top_down_pose_model(model, f, d, format='xyxy')[0]
    for j, item in enumerate(pose):
        kp[j, i] = item['keypoints']
    prog_bar.update()
return kp

def ntu_pose_extraction(vid, skip_postproc=False): frame_paths = extract_frame(vid) det_results = detection_inference(args, frame_paths) if not skip_postproc: det_results = ntu_det_postproc(vid, det_results) pose_results = pose_inference(args, frame_paths, det_results) anno = dict() anno['keypoint'] = pose_results[..., :2] anno['keypoint_score'] = pose_results[..., 2] anno['frame_dir'] = osp.splitext(osp.basename(vid))[0] anno['img_shape'] = (1080, 1920) anno['original_shape'] = (1080, 1920) anno['total_frames'] = pose_results.shape[1] anno['label'] = int(osp.basename(vid).split('A')[1][:3]) - 1 shutil.rmtree(osp.dirname(frame_paths[0]))

return anno

def parse_args(): parser = argparse.ArgumentParser( description='Generate Pose Annotation for a single NTURGB-D video') parser.add_argument('video', type=str, help='source video') parser.add_argument('output', type=str, help='output pickle name') parser.add_argument('--device', type=str, default='cuda:0') parser.add_argument('--skip-postproc', action='store_true') args = parser.parse_args() return args

if name == 'main': global_args = parse_args() args.device = global_args.device args.video = global_args.video args.output = global_args.output args.skip_postproc = global_args.skip_postproc anno = ntu_pose_extraction(args.video, args.skip_postproc) mmcv.dump(anno, args.output)

If you guys know how to fix it, please get me back, thank you very much.

Better369 commented 1 year ago

@hukkai Can you help take a look? Thank you so much.

cir7 commented 1 year ago

@Better369 This script has not been updated in branch 1.x, we will fix it asap

Better369 commented 1 year ago

Hello,when will it be updated?

cir7 commented 1 year ago

@Better369 we will fix the issue in #2246