Closed Ishihara-Masabumi closed 1 year ago
Hi, @Ishihara-Masabumi
Please update demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py
according to https://github.com/open-mmlab/mmaction2/pull/2367. There is a bug, sorry.
Thank you for your reply. BTW, it made the same error, in spite of changing the config file as follows:
$ python3 demo/demo_skeleton.py demo/demo_skeleton.mp4 demo/demo_skeleton_out.mp4 --config demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py --checkpoint https://download.openmmlab.com/mmaction/skeleton/posec3d/slowonly_r50_u48_240e_ntu60_xsub_keypoint/slowonly_r50_u48_240e_ntu60_xsub_keypoint-f3adabf1.pth --det-config demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py --det-checkpoint http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --det-score-thr 0.9 --det-cat-id 0 --pose-config demo/demo_configs/td-hm_hrnet-w32_8xb64-210e_coco-256x192_infer.py --pose-checkpoint https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth --label-map tools/data/skeleton/label_map_ntu60.txt
Loads checkpoint by http backend from path: http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
Traceback (most recent call last):
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg
obj = obj_cls(**args) # type: ignore
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/datasets/base_det_dataset.py", line 40, in __init__
super().__init__(*args, **kwargs)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/dataset/base_dataset.py", line 247, in __init__
self.pipeline = Compose(pipeline)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/dataset/base_dataset.py", line 37, in __init__
transform = TRANSFORMS.build(transform)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/registry/registry.py", line 545, in build
return self.build_func(cfg, *args, **kwargs, registry=self)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 100, in build_from_cfg
raise KeyError(
KeyError: 'mmdet.LoadImageFromFile is not in the transform registry. Please check whether the value of `mmdet.LoadImageFromFile` is correct or it was registered as expected. More details can be found at https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#import-the-custom-module'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "demo/demo_skeleton.py", line 188, in <module>
main()
File "demo/demo_skeleton.py", line 137, in main
det_results, _ = detection_inference(args.det_config, args.det_checkpoint,
File "/home/dl/openmmlab/mmaction2/mmaction/apis/inference.py", line 134, in detection_inference
model = init_detector(
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/apis/inference.py", line 97, in init_detector
metainfo = DATASETS.build(test_dataset_cfg).metainfo
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/registry/registry.py", line 545, in build
return self.build_func(cfg, *args, **kwargs, registry=self)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/registry/build_functions.py", line 135, in build_from_cfg
raise type(e)(
KeyError: "class `CocoDataset` in mmdet/datasets/coco.py: 'mmdet.LoadImageFromFile is not in the transform registry. Please check whether the value of `mmdet.LoadImageFromFile` is correct or it was registered as expected. More details can be found at https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#import-the-custom-module'"
Please let me know how to fix it, again.
What's the version of your mmdet
? It works fine with mmdet 3.0
.
mmdet version is 3.0.0.
Could you please show me the full content of demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py
.
The full content of demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py is as follows:
# Copyright (c) OpenMMLab. All rights reserved.
# model settings
model = dict(
type='FasterRCNN',
_scope_='mmdet',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
file_client_args = dict(backend='disk')
test_pipeline = [
dict(type='mmdet.LoadImageFromFile', file_client_args=file_client_args),
dict(type='mmdet.Resize', scale=(1333, 800), keep_ratio=True),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
test_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline))
You didn't modify your config according to this PR https://github.com/open-mmlab/mmaction2/pull/2367, bro.
You didn't modify your config according to this PR #2367, bro.
I have met this problem after modifying the config. env:
!pip install -U openmim
!mim install mmengine 'mmcv>=2.0.0rc1'
!mim install "mmdet>=3.0.0rc5"
!mim install "mmpose>=1.0.0rc0"
mmengine version is 0.7.2
Thank you very much for your solution. But, there is another error as below.
$ python3 demo/demo_skeleton.py demo/demo_skeleton.mp4 demo/demo_skeleton_out.mp4 --config configs/skeleton/posec3d/slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint.py --checkpoint https://download.openmmlab.com/mmaction/skeleton/posec3d/slowonly_r50_u48_240e_ntu60_xsub_keypoint/slowonly_r50_u48_240e_ntu60_xsub_keypoint-f3adabf1.pth --det-config demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py --det-checkpoint http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --det-score-thr 0.9 --det-cat-id 0 --pose-config demo/demo_configs/td-hm_hrnet-w32_8xb64-210e_coco-256x192_infer.py --pose-checkpoint https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth --label-map tools/data/skeleton/label_map_ntu60.txt
Loads checkpoint by http backend from path: http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
Performing Human Detection for each frame
[ ] 0/72, elapsed: 0s, ETA:04/12 11:25:49 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
04/12 11:25:49 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
Traceback (most recent call last):
File "demo/demo_skeleton.py", line 188, in <module>
main()
File "demo/demo_skeleton.py", line 137, in main
det_results, _ = detection_inference(args.det_config, args.det_checkpoint,
File "/home/dl/openmmlab/mmaction2/mmaction/apis/inference.py", line 141, in detection_inference
det_data_sample: DetDataSample = inference_detector(model, frame_path)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/apis/inference.py", line 177, in inference_detector
results = model.test_step(data_)[0]
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/model/base_model/base_model.py", line 145, in test_step
return self._run_forward(data, mode='predict') # type: ignore
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/model/base_model/base_model.py", line 326, in _run_forward
results = self(**data, mode=mode)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/models/detectors/base.py", line 94, in forward
return self.predict(inputs, data_samples)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/models/detectors/two_stage.py", line 227, in predict
x = self.extract_feat(batch_inputs)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/models/detectors/two_stage.py", line 110, in extract_feat
x = self.backbone(batch_inputs)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/models/backbones/resnet.py", line 636, in forward
x = self.conv1(x)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 457, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 453, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
Please let me know this solution.
/home/user/anaconda3/envs/mmaction2/bin/python /home/user/mmaction2-main/demo/demo_skeleton.py
Loads checkpoint by http backend from path: http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
Performing Human Detection for each frame
[ ] 0/72, elapsed: 0s, ETA:04/12 10:59:56 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
04/12 10:59:56 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 72/72, 3.2 task/s, elapsed: 23s, ETA: 0s
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth
Performing Human Pose Estimation for each frame
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 72/72, 9.2 task/s, elapsed: 8s, ETA: 0s
Loads checkpoint by http backend from path: https://download.openmmlab.com/mmaction/skeleton/posec3d/slowonly_r50_u48_240e_ntu60_xsub_keypoint/slowonly_r50_u48_240e_ntu60_xsub_keypoint-f3adabf1.pth
04/12 11:00:34 - mmengine - WARNING - Visualizer
backend is not initialized because save_dir is None.
Traceback (most recent call last):
File "/home/user/mmaction2-main/demo/demo_skeleton.py", line 187, in
After modifying the farster-rcnn config, I also encountered the same problem and hope to receive your answer
The issue caused by kpt_score_thr
has been solved at https://github.com/open-mmlab/mmaction2/pull/2381.
Guys can pull the latest main
branch to update these modifications [https://github.com/open-mmlab/mmaction2/pull/2381 https://github.com/open-mmlab/mmaction2/pull/2380] to solve the issues mentioned above, thanks all for pointing these issues out.
Guys can pull the latest
main
branch to update these modifications [https://github.com/[/pull/2381](https://github.com/open-mmlab/mmaction2/pull/2381) https://github.com/[/pull/2380](https://github.com/open-mmlab/mmaction2/pull/2380)] to solve the issues mentioned above, thanks all for pointing these issues out.
Thank you very much for your answer!
I tried to pull by the following manner.
$ git pull
Updating f05b1ddc..ad60cf03
Fast-forward
.owners.yml | 16 ++++
README.md | 143 +++++++++++++++----------------
README_zh-CN.md | 135 +++++++++++++++--------------
.../tsn_imagenet-pretrained-r50_8xb32-1x1x3-100e_kinetics400-rgb.py | 15 +---
demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py | 2 +-
demo/demo_skeleton.py | 2 +-
docs/en/get_started/guide_to_framework.md | 2 +-
docs/en/get_started/installation.md | 1 -
docs/en/get_started/overview.md | 2 +-
docs/en/index.rst | 2 +-
docs/en/user_guides/{Inference.md => inference.md} | 0
tests/models/utils/test_gradcam.py | 1 +
12 files changed, 162 insertions(+), 159 deletions(-)
create mode 100644 .owners.yml
rename docs/en/user_guides/{Inference.md => inference.md} (100%)
Then, I run the same command line above, but the error message is the same.
$ python3 demo/demo_skeleton.py demo/demo_skeleton.mp4 demo/demo_skeleton_out.mp4 --config configs/skeleton/posec3d/slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint.py --checkpoint https://download.openmmlab.com/mmaction/skeleton/posec3d/slowonly_r50_u48_240e_ntu60_xsub_keypoint/slowonly_r50_u48_240e_ntu60_xsub_keypoint-f3adabf1.pth --det-config demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py --det-checkpoint http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --det-score-thr 0.9 --det-cat-id 0 --pose-config demo/demo_configs/td-hm_hrnet-w32_8xb64-210e_coco-256x192_infer.py --pose-checkpoint https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth --label-map tools/data/skeleton/label_map_ntu60.txt
Loads checkpoint by http backend from path: http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
Performing Human Detection for each frame
[ ] 0/72, elapsed: 0s, ETA:04/12 13:38:05 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
04/12 13:38:05 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
Traceback (most recent call last):
File "demo/demo_skeleton.py", line 189, in <module>
main()
File "demo/demo_skeleton.py", line 139, in main
det_results, _ = detection_inference(args.det_config, args.det_checkpoint,
File "/home/dl/openmmlab/mmaction2/mmaction/apis/inference.py", line 144, in detection_inference
det_data_sample: DetDataSample = inference_detector(model, frame_path)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/apis/inference.py", line 177, in inference_detector
results = model.test_step(data_)[0]
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/model/base_model/base_model.py", line 145, in test_step
return self._run_forward(data, mode='predict') # type: ignore
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmengine/model/base_model/base_model.py", line 326, in _run_forward
results = self(**data, mode=mode)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/models/detectors/base.py", line 94, in forward
return self.predict(inputs, data_samples)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/models/detectors/two_stage.py", line 227, in predict
x = self.extract_feat(batch_inputs)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/models/detectors/two_stage.py", line 110, in extract_feat
x = self.backbone(batch_inputs)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/models/backbones/resnet.py", line 636, in forward
x = self.conv1(x)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 457, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 453, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
Please let me know how to fix it.
The "cuDNN error: CUDNN_STATUS_NOT_INITIALIZED" error usually occurs when there is an issue with the installation or initialization of the cuDNN library, which is a GPU-accelerated deep neural network library.
Here are some steps you can try to resolve this error:
Make sure that you have installed the latest version of cuDNN that is compatible with your CUDA version. You can download the cuDNN library from the NVIDIA website.
Check if your CUDA installation is properly configured. You can verify this by running a simple CUDA program.
Make sure that your GPU drivers are up to date. You can download and install the latest GPU drivers from the NVIDIA website.
If you are using a virtual environment, make sure that you have installed the necessary packages within that environment.
Try restarting your machine and then rerun your code to see if the issue persists.
If none of the above steps work, you can try uninstalling and reinstalling the cuDNN library.
If you are still encountering the same error, it may be helpful to provide more information about your setup, including the versions of cuDNN, CUDA, and your GPU drivers, as well as the code you are trying to run, so that the problem can be diagnosed more accurately.
Thanks. Which version do you recommend for cuDNN, CUDA?
Actually, I don't know the reason for your issue and it seems not the problem of mmaction2. Could you please find more information about your issue at here?
One of the test is below.
$ python3
Python 3.8.16 (default, Mar 2 2023, 03:21:46)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch.cuda
>>> torch.cuda.is_available()
True
>>> exit()
But, the other is below.
$ python3 test.py
Traceback (most recent call last):
File "test.py", line 7, in <module>
output = m(input)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 307, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/dl/.local/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 303, in _conv_forward
return F.conv1d(input, weight, bias, self.stride,
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
Next, I reinstalled some library as follows:
pip3 install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
Then, the uDNN error: CUDNN_STATUS_NOT_INITIALIZED disappeared. But, the next error occurred, as below.
$ python3 demo/demo_skeleton.py demo/demo_skeleton.mp4 demo/demo_skeleton_out.mp4 --config configs/skeleton/posec3d/slowonly_r50_8xb16-u48-240e_ntu60-xsub-keypoint.py --checkpoint https://download.openmmlab.com/mmaction/skeleton/posec3d/slowonly_r50_u48_240e_ntu60_xsub_keypoint/slowonly_r50_u48_240e_ntu60_xsub_keypoint-f3adabf1.pth --det-config demo/demo_configs/faster-rcnn_r50_fpn_2x_coco_infer.py --det-checkpoint http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --det-score-thr 0.9 --det-cat-id 0 --pose-config demo/demo_configs/td-hm_hrnet-w32_8xb64-210e_coco-256x192_infer.py --pose-checkpoint https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth --label-map tools/data/skeleton/label_map_ntu60.txt
Traceback (most recent call last):
File "/home/dl/openmmlab/mmaction2/mmaction/apis/inference.py", line 130, in detection_inference
from mmdet.apis import inference_detector, init_detector
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/apis/__init__.py", line 2, in <module>
from .det_inferencer import DetInferencer
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/apis/det_inferencer.py", line 21, in <module>
from mmdet.evaluation import INSTANCE_OFFSET
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/evaluation/__init__.py", line 3, in <module>
from .metrics import * # noqa: F401,F403
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/evaluation/metrics/__init__.py", line 3, in <module>
from .coco_metric import CocoMetric
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/evaluation/metrics/coco_metric.py", line 16, in <module>
from mmdet.datasets.api_wrappers import COCO, COCOeval
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/datasets/__init__.py", line 14, in <module>
from .utils import get_loading_pipeline
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/datasets/utils.py", line 5, in <module>
from mmdet.datasets.transforms import LoadAnnotations, LoadPanopticAnnotations
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/datasets/transforms/__init__.py", line 6, in <module>
from .formatting import ImageToTensor, PackDetInputs, ToTensor, Transpose
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/datasets/transforms/formatting.py", line 9, in <module>
from mmdet.structures.bbox import BaseBoxes
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/structures/bbox/__init__.py", line 2, in <module>
from .base_boxes import BaseBoxes
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/structures/bbox/base_boxes.py", line 9, in <module>
from mmdet.structures.mask.structures import BitmapMasks, PolygonMasks
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/structures/mask/__init__.py", line 3, in <module>
from .structures import (BaseInstanceMasks, BitmapMasks, PolygonMasks,
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmdet/structures/mask/structures.py", line 12, in <module>
from mmcv.ops.roi_align import roi_align
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmcv/ops/__init__.py", line 2, in <module>
from .active_rotated_filter import active_rotated_filter
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmcv/ops/active_rotated_filter.py", line 10, in <module>
ext_module = ext_loader.load_ext(
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmcv/utils/ext_loader.py", line 13, in load_ext
ext = importlib.import_module('mmcv.' + name)
File "/home/dl/miniconda3/envs/openmmlab/lib/python3.8/importlib/__init__.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
ImportError: /home/dl/miniconda3/envs/openmmlab/lib/python3.8/site-packages/mmcv/_ext.cpython-38-x86_64-linux-gnu.so: undefined symbol: _ZNK2at10TensorBase8data_ptrIdEEPT_v
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "demo/demo_skeleton.py", line 189, in <module>
main()
File "demo/demo_skeleton.py", line 139, in main
det_results, _ = detection_inference(args.det_config, args.det_checkpoint,
File "/home/dl/openmmlab/mmaction2/mmaction/apis/inference.py", line 133, in detection_inference
raise ImportError('Failed to import `inference_detector` and '
ImportError: Failed to import `inference_detector` and `init_detector` from `mmdet.apis`. These apis are required in this inference api!
This error seems not to be CUDNN error, but mmdet.apis error. Please let me know how to fix it.
Could you please check your versions of dependencies? https://mmaction2.readthedocs.io/en/latest/get_started/installation.html#troubleshooting
Thanks.
The doc issue
When I run demo_skeleton.py according to https://github.com/open-mmlab/mmaction2/tree/main/demo, the following error occurred.
Please let me know how to fix it.
Suggest a potential alternative/fix
No response