open-mmlab / mmaction2

OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
https://mmaction2.readthedocs.io
Apache License 2.0
4.31k stars 1.25k forks source link

[Bug] It is not possible to use "analysis_tools\get_flops.py" to get the number of parameters and calculations #2822

Open aonihao1 opened 7 months ago

aonihao1 commented 7 months ago

Branch

main branch (1.x version, such as v1.0.0, or dev-1.x branch)

Prerequisite

Environment

python 3.9.13 pytorch 1.12.1

Describe the bug

Traceback (most recent call last): File "F:\opensjj\mmaction2-main\tools\analysis_tools\get_flops.py", line 72, in main() File "F:\opensjj\mmaction2-main\tools\analysis_tools\get_flops.py", line 58, in main analysis_results = get_model_complexity_info(model, input_shape) File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\mmengine\analysis\print_helper.py", line 748, in get_model_complexity_info flops = flop_handler.total() File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\mmengine\analysis\jit_analysis.py", line 268, in total stats = self._analyze() File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\mmengine\analysis\jit_analysis.py", line 570, in _analyze graph = _get_scoped_trace_graph(self._model, self._inputs, File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\mmengine\analysis\jit_analysis.py", line 194, in _get_scoped_tracegraph graph, = _get_trace_graph(module, inputs) File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\torch\jit_trace.py", line 1175, in _get_trace_graph outs = ONNXTracedModule(f, strict, _force_outplace, return_inputs, _return_inputs_states)(*args, kwargs) File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1130, in _call_impl return forward_call(*input, kwargs) File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\torch\jit_trace.py", line 127, in forward graph, out = torch._C._create_graph_by_tracing( File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\torch\jit_trace.py", line 118, in wrapper outs.append(self.inner(trace_inputs)) File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1148, in _call_impl result = forward_call(input, kwargs) File "C:\Users\YA\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 1118, in _slow_forward result = self.forward(*input, kwargs) File "F:\opensjj\mmaction2-main\mmaction\models\recognizers\recognizer3d_mm.py", line 37, in extract_feat for m, m_data in inputs.items(): AttributeError: 'Tensor' object has no attribute 'items'

Reproduces the problem - code sample

import argparse

from mmengine import Config from mmengine.registry import init_default_scope

from mmaction.registry import MODELS

try: from mmengine.analysis import get_model_complexity_info except ImportError: raise ImportError('Please upgrade mmcv to >0.6.2')

def parse_args(): parser = argparse.ArgumentParser(description='Get model flops and params') parser.add_argument('config', help='config file path') parser.add_argument( '--shape', type=int, nargs='+', default=[12,3,8,224,224], help='input image size') args = parser.parse_args() return args

def main():

args = parse_args()

if len(args.shape) == 1:
    input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
    input_shape = (1, 3) + tuple(args.shape)
elif len(args.shape) == 4:
    # n, c, h, w = args.shape for 2D recognizer
    input_shape = tuple(args.shape)
elif len(args.shape) == 5:
    # n, c, t, h, w = args.shape for 3D recognizer or
    # n, m, t, v, c = args.shape for GCN-based recognizer
    input_shape = tuple(args.shape)
else:
    raise ValueError('invalid input shape')

cfg = Config.fromfile(args.config)
init_default_scope(cfg.get('default_scope', 'mmaction'))
model = MODELS.build(cfg.model)
model.eval()

if hasattr(model, 'extract_feat'):
    model.forward = model.extract_feat
else:
    raise NotImplementedError(
        'FLOPs counter is currently not currently supported with {}'.
        format(model.__class__.__name__))

analysis_results = get_model_complexity_info(model, input_shape)
flops = analysis_results['flops_str']
params = analysis_results['params_str']
table = analysis_results['out_table']
print(table)
split_line = '=' * 30
print(f'\n{split_line}\nInput shape: {input_shape}\n'
      f'Flops: {flops}\nParams: {params}\n{split_line}')
print('!!!Please be cautious if you use the results in papers. '
      'You may need to check if all ops are supported and verify that the '
      'flops computation is correct.')

if name == 'main': main()

Reproduces the problem - command or script

No response

Reproduces the problem - error message

No response

Additional information

Here is another question, if we want to analyze the number of parameters and calculations of rgbposec3d, what should be filled here? “default=[12,3,8,224,224],” Here is another question, if we want to analyze the number of parameters and calculations of rgb_only, what should be filled here?

LiYH1234 commented 7 months ago

I also have the same problem as you. Can you let me know if you have solved it? Also, there is a problem with my 1.0.0 version loss image and the top 1 image that cannot be produced. Do you know how to solve it

aonihao1 commented 7 months ago

我和你也有同样的问题。如果你已经解决了,你能告诉我吗?另外,我的 1.0.0 版本丢失映像和无法生成的前 1 个映像存在问题。你知道怎么解决吗 I haven't solved it yet,

aonihao1 commented 7 months ago

我和你也有同样的问题。如果你已经解决了,你能告诉我吗?另外,我的 1.0.0 版本丢失映像和无法生成的前 1 个映像存在问题。你知道怎么解决吗 I haven't solved it yet, The graph can be drawn in terms of log