open-mmlab / mmaction2

OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark
https://mmaction2.readthedocs.io
Apache License 2.0
4.31k stars 1.25k forks source link

[Bug] batch_size problem #2832

Open Sunshulong opened 7 months ago

Sunshulong commented 7 months ago

Branch

main branch (1.x version, such as v1.0.0, or dev-1.x branch)

Prerequisite

Environment

base = '../../base/default_runtime.py'

model = dict( type='Recognizer3D', backbone=dict( type='UniFormer', depth=[3, 4, 8, 3], embed_dim=[64, 128, 320, 512], head_dim=64, drop_path_rate=0.1), cls_head=dict( type='I3DHead', dropout_ratio=0., num_classes=120, in_channels=512, average_clips='prob'), data_preprocessor=dict( type='ActionDataPreprocessor', mean=[114.75, 114.75, 114.75], std=[57.375, 57.375, 57.375], format_shape='NCTHW'))

dataset_type = 'PoseDataset' ann_file = 'data/skeleton/ntu120_2d.pkl' left_kp = [1, 3, 5, 7, 9, 11, 13, 15] right_kp = [2, 4, 6, 8, 10, 12, 14, 16] train_pipeline = [ dict(type='UniformSampleFrames', clip_len=48), dict(type='PoseDecode'), dict(type='PoseCompact', hw_ratio=1., allow_imgpad=True), dict(type='Resize', scale=(-1, 64)), dict(type='RandomResizedCrop', area_range=(0.56, 1.0)), dict(type='Resize', scale=(56, 56), keep_ratio=False), dict(type='Flip', flip_ratio=0.5, left_kp=left_kp, right_kp=right_kp), dict( type='GeneratePoseTarget', sigma=0.6, use_score=True, with_kp=True, with_limb=False), dict(type='FormatShape', input_format='NCTHW_Heatmap'), dict(type='PackActionInputs') ] val_pipeline = [ dict(type='UniformSampleFrames', clip_len=48, num_clips=1, test_mode=True), dict(type='PoseDecode'), dict(type='PoseCompact', hw_ratio=1., allow_imgpad=True), dict(type='Resize', scale=(-1, 64)), dict(type='CenterCrop', crop_size=64), dict( type='GeneratePoseTarget', sigma=0.6, use_score=True, with_kp=True, with_limb=False), dict(type='FormatShape', input_format='NCTHW_Heatmap'), dict(type='PackActionInputs') ] test_pipeline = [ dict( type='UniformSampleFrames', clip_len=48, num_clips=10, test_mode=True), dict(type='PoseDecode'), dict(type='PoseCompact', hw_ratio=1., allow_imgpad=True), dict(type='Resize', scale=(-1, 64)), dict(type='CenterCrop', crop_size=64), dict( type='GeneratePoseTarget', sigma=0.6, use_score=True, with_kp=True, with_limb=False, double=True, left_kp=left_kp, right_kp=right_kp), dict(type='FormatShape', input_format='NCTHW_Heatmap'), dict(type='PackActionInputs') ]

train_dataloader = dict( batch_size=3, num_workers=16, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=1, dataset=dict( type=dataset_type, ann_file=ann_file, split='xsub_train', pipeline=train_pipeline))) val_dataloader = dict( batch_size=3, num_workers=16, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, ann_file=ann_file, split='xsub_val', pipeline=val_pipeline, test_mode=True)) test_dataloader = dict( batch_size=3, num_workers=16, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, ann_file=ann_file, split='xsub_val', pipeline=test_pipeline, test_mode=True))

val_evaluator = [dict(type='AccMetric')] test_evaluator = val_evaluator

train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=24, val_begin=1, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop')

param_scheduler = [ dict( type='CosineAnnealingLR', eta_min=0, T_max=24, by_epoch=True, convert_to_iter_based=True) ]

optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0003), clip_grad=dict(max_norm=40, norm_type=2))

Describe the bug

Hello, first of all I would like to ask, will batch_size change during the training process? I replaced posec3d's feature extraction network with uniformer, and the above is my configuration file. But something went wrong in data_preprocessor.py. Even in the first round of training, the batch_size was still displayed as 3 normally, but later the batch_size became 2. Below is part of my training log. Please help to answer this question. image

Reproduces the problem - code sample

No response

Reproduces the problem - command or script

No response

Reproduces the problem - error message

No response

Additional information

No response