Open Jasonlaiya opened 11 months ago
Maybe the mmcv version is to old?
Hi, maybe mmdeploy version is old?
12/07 11:11:04 - mmengine - INFO - **Environmental information** 12/07 11:11:07 - mmengine - INFO - sys.platform: win32 12/07 11:11:07 - mmengine - INFO - Python: 3.8.18 (default, Sep 11 2023, 13:39:12) [MSC v.1916 64 bit (AMD64)] 12/07 11:11:07 - mmengine - INFO - CUDA available: True 12/07 11:11:07 - mmengine - INFO - numpy_random_seed: 2147483648 12/07 11:11:07 - mmengine - INFO - GPU 0: NVIDIA GeForce GTX 1080 Ti 12/07 11:11:07 - mmengine - INFO - CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7 12/07 11:11:07 - mmengine - INFO - NVCC: Cuda compilation tools, release 11.7, V11.7.64 12/07 11:11:07 - mmengine - INFO - MSVC: 用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.36.32537 版 12/07 11:11:07 - mmengine - INFO - GCC: n/a 12/07 11:11:07 - mmengine - INFO - PyTorch: 2.1.0 12/07 11:11:07 - mmengine - INFO - PyTorch compiling details: PyTorch built with:
12/07 11:11:07 - mmengine - INFO - TorchVision: 0.16.0+cu121 12/07 11:11:07 - mmengine - INFO - OpenCV: 4.8.1 12/07 11:11:07 - mmengine - INFO - MMEngine: 0.9.1 12/07 11:11:07 - mmengine - INFO - MMCV: 2.1.0 12/07 11:11:07 - mmengine - INFO - MMCV Compiler: MSVC 192930148 12/07 11:11:07 - mmengine - INFO - MMCV CUDA Compiler: 12.1 12/07 11:11:07 - mmengine - INFO - MMDeploy: 1.0.0+ 12/07 11:11:07 - mmengine - INFO -
12/07 11:11:07 - mmengine - INFO - **Backend information** 12/07 11:11:07 - mmengine - INFO - tensorrt: None 12/07 11:11:07 - mmengine - INFO - ONNXRuntime: 1.8.1 12/07 11:11:07 - mmengine - INFO - ONNXRuntime-gpu: None 12/07 11:11:07 - mmengine - INFO - ONNXRuntime custom ops: Available 12/07 11:11:07 - mmengine - INFO - pplnn: None 12/07 11:11:08 - mmengine - INFO - ncnn: None 12/07 11:11:08 - mmengine - INFO - snpe: None 12/07 11:11:08 - mmengine - INFO - openvino: None 12/07 11:11:08 - mmengine - INFO - torchscript: 2.1.0+cu121 12/07 11:11:08 - mmengine - INFO - torchscript custom ops: NotAvailable 12/07 11:11:08 - mmengine - INFO - rknn-toolkit: None 12/07 11:11:08 - mmengine - INFO - rknn-toolkit2: None 12/07 11:11:08 - mmengine - INFO - ascend: None 12/07 11:11:08 - mmengine - INFO - coreml: None 12/07 11:11:08 - mmengine - INFO - tvm: None 12/07 11:11:08 - mmengine - INFO - vacc: None 12/07 11:11:08 - mmengine - INFO -
12/07 11:11:08 - mmengine - INFO - **Codebase information** 12/07 11:11:08 - mmengine - INFO - mmdet: 3.1.0 12/07 11:11:08 - mmengine - INFO - mmseg: None 12/07 11:11:08 - mmengine - INFO - mmcls: None 12/07 11:11:08 - mmengine - INFO - mmocr: None 12/07 11:11:08 - mmengine - INFO - mmedit: None 12/07 11:11:08 - mmengine - INFO - mmdet3d: None 12/07 11:11:08 - mmengine - INFO - mmpose: None 12/07 11:11:08 - mmengine - INFO - mmrotate: None 12/07 11:11:08 - mmengine - INFO - mmaction: None 12/07 11:11:08 - mmengine - INFO - mmrazor: None
以上是我更新后的环境,但依然报错
12/07 11:10:33 - mmengine - WARNING - Failed to search registry with scope "mmdet" in the "Codebases" registry tree. As a workaround, the current "Codebases" registry in "mmdeploy" is used to build instance. This may cause unexpected f
ailure when running the built modules. Please check whether "mmdet" is a correct scope, or whether the registry is initialized.
12/07 11:10:33 - mmengine - WARNING - Failed to search registry with scope "mmdet" in the "mmdet_tasks" registry tree. As a workaround, the current "mmdet_tasks" registry in "mmdeploy" is used to build instance. This may cause unexpect
ed failure when running the built modules. Please check whether "mmdet" is a correct scope, or whether the registry is initialized.
Traceback (most recent call last):
File "./mmdeploy/tools/deploy.py", line 334, in
There is something wrong with your environment. I suggest taking a day to understand all of the dependencies -> mmengine , mmcv , pytorch + cuda , cuda with (pplcv and mmdeploy) + any other dependencies you might need like tensorRT. I use cuda 11.8 pytorch 2.1 + cuda 11.8 (although its better to use 2.0 for now) tensorRT 8.5.1, mmdeploy latest, mmengine latest mmcv >=2, mmdet latest . The dockerfile is a great place to start.
I just saw that you are using mmdetection 2, if you dont need that version, switch to 3 and use the setup I menioned above. I dont currently use 2 so I cant help you with that.
@Jasonlaiya I replied your new issue. I think the most direct way is to use docker...
Your response has been very helpful in solving this problem for me.I change my mmdetection-master 2 to mmdetection-main 3,now it works. However if I want to use master2, I guess it's better use docker.
Checklist
Describe the bug
我能转换出onnx模型但不能可视化好像,那么这样该如何验证我的onnx模型是否正确呢,或者您能帮我看看为啥无法可视化
Reproduction
python ./mmdeploy/tools/deploy.py mmdeploy\configs\mmdet\detection\detection_onnxruntime_static.py configs\retinanet\retinanet_r50_fpn_1x_coco.py checkpoints\retinanet_r50_fpn_1x_coco_20200 130-c2398f9e.pth data/coco/val2017/000000000139.jpg --test-img data/coco/val2017/000000000139.jpg --work-dir mmdeploy_model/retinanet --show --dump-info
Environment
Error traceback