open-mmlab / mmdetection

OpenMMLab Detection Toolbox and Benchmark
https://mmdetection.readthedocs.io
Apache License 2.0
29.52k stars 9.46k forks source link

How to improve CPU utilization ? #11354

Open gitleej opened 10 months ago

gitleej commented 10 months ago

When I train yolox using RTX4090, the CPU usage is very low.Only two cores are used. image And the GPU usage also low,only used much GPU memory. image How to improve the CPU and GPU utilization? Does dataloader use GPU or CPU by default?

gitleej commented 10 months ago

When I train yolox using RTX4090, the CPU usage is very low.Only two cores are used. image And the GPU usage also low,only used much GPU memory. image How to improve the CPU and GPU utilization? Does dataloader use GPU or CPU by default?

System info


01/10 09:17:55 - mmengine - INFO - 
------------------------------------------------------------
System environment:
sys.platform: linux
Python: 3.8.18 (default, Sep 11 2023, 13:40:15) [GCC 11.2.0]
CUDA available: True
numpy_random_seed: 580425004
GPU 0,1: NVIDIA GeForce RTX 4090
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
PyTorch: 1.12.0
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.3.2  (built against CUDA 11.5)
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 
TorchVision: 0.13.0
OpenCV: 4.9.0
MMEngine: 0.10.2

Runtime environment: cudnn_benchmark: False mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: 580425004 Distributed launcher: none Distributed training: False GPU number: 1


# config file
```python
# _base_ = './yolox_s_8xb8-300e_dome_down_voc.py'

_base_ = [
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py',
    './yolox_tta.py'
]

img_scale = (640, 640)  # width, height

# model settings
model = dict(
    type='YOLOX',
    data_preprocessor=dict(
        type='DetDataPreprocessor',
        pad_size_divisor=32,
        # mean=[187.17040133180873, 186.87045380583902, 186.66486354591567],
        # std=[1.0708850375722379, 2.0779975556038033, 1.8805358214173786],
        batch_augments=[
            dict(
                type='BatchSyncRandomResize',
                random_size_range=(320, 640),
                size_divisor=32,
                interval=10)
        ]),
    backbone=dict(
        type='CSPDarknet',
        deepen_factor=0.33,
        widen_factor=0.375,
        # deepen_factor=0.33,
        # widen_factor=0.5,
        out_indices=(2, 3, 4),
        use_depthwise=False,
        spp_kernal_sizes=(5, 9, 13),
        norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
        act_cfg=dict(type='Swish'),
    ),
    neck=dict(
        type='YOLOXPAFPN',
        in_channels=[96, 192, 384],
        out_channels=96,
        # in_channels=[128, 256, 512],
        # out_channels=128,
        num_csp_blocks=1,
        use_depthwise=False,
        upsample_cfg=dict(scale_factor=2, mode='nearest'),
        norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
        act_cfg=dict(type='Swish')),
    bbox_head=dict(
        type='YOLOXHead',
        num_classes=1,
        in_channels=96,
        feat_channels=96,
        # in_channels=128,
        # feat_channels=128,
        stacked_convs=2,
        strides=(8, 16, 32),
        use_depthwise=False,
        norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
        act_cfg=dict(type='Swish'),
        loss_cls=dict(
            type='CrossEntropyLoss',
            use_sigmoid=True,
            reduction='sum',
            loss_weight=1.0),
        loss_bbox=dict(
            type='IoULoss',
            mode='square',
            eps=1e-16,
            reduction='sum',
            loss_weight=5.0),
        loss_obj=dict(
            type='CrossEntropyLoss',
            use_sigmoid=True,
            reduction='sum',
            loss_weight=1.0),
        loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)),
    train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
    # In order to align the source code, the threshold of the val phase is
    # 0.01, and the threshold of the test phase is 0.001.
    test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))

# model settings
# model = dict(
#     data_preprocessor=dict(batch_augments=[
#         dict(
#             type='BatchSyncRandomResize',
#             random_size_range=(320, 640),
#             size_divisor=32,
#             interval=10)
#     ]),
#     backbone=dict(deepen_factor=0.33, widen_factor=0.375),
#     neck=dict(in_channels=[96, 192, 384], out_channels=96),
#     bbox_head=dict(in_channels=96, feat_channels=96))

# dataset settings
# data_root = 'E:\\dataset\\02-WTGK\\dome_down_voc'
data_root = './dataset/01-WTGK/dome_down_voc'
dataset_type = 'VOCDataset'

metainfo = {
        'classes':
        ('test',),
        # palette is a list of color tuples, which is used for visualization.
        'palette': [(106, 0, 228), ]
    }

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection/coco/'

# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection/',
#         'data/': 's3://openmmlab/datasets/detection/'
#     }))
backend_args = None

train_pipeline = [
    dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
    dict(
        type='RandomAffine',
        scaling_ratio_range=(0.5, 1.5),
        # img_scale is (width, height)
        border=(-img_scale[0] // 2, -img_scale[1] // 2)),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', prob=0.5),
    # Resize and Pad are for the last 15 epochs when Mosaic and
    # RandomAffine are closed by YOLOXModeSwitchHook.
    dict(type='Resize', scale=img_scale, keep_ratio=False),
    dict(
        type='Pad',
        pad_to_square=True,
        pad_val=dict(img=(114.0, 114.0, 114.0))),
    dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
    dict(type='PackDetInputs')
]

train_dataset = dict(
    # use MultiImageMixDataset wrapper to support mosaic and mixup
    type='MultiImageMixDataset',
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        metainfo=metainfo,
        ann_file='ImageSets/Main/train.txt',
        data_prefix=dict(sub_data_root="", img='JPEGImages'),
        # sub_data_root="VOC2007",
        pipeline=[
            dict(type='LoadImageFromFile', backend_args=backend_args),
            dict(type='LoadAnnotations', with_bbox=True)
        ],
        filter_cfg=dict(filter_empty_gt=False, min_size=32),
        backend_args=backend_args),
    pipeline=train_pipeline)

test_pipeline = [
    # dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='LoadImageFromFile', backend_args=backend_args),
    # dict(type='Resize', scale=(416, 416), keep_ratio=False),
    dict(type='Resize', scale=img_scale, keep_ratio=False),
    dict(
        type='Pad',
        pad_to_square=True,
        pad_val=dict(img=(114.0, 114.0, 114.0))),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]

train_dataloader = dict(
    batch_size=48,
    num_workers=48,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=train_dataset)
val_dataloader = dict(
    batch_size=48,
    num_workers=48,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        metainfo=metainfo,
        ann_file='ImageSets/Main/test.txt',
        data_prefix=dict(sub_data_root="", img='JPEGImages'),
        test_mode=True,
        pipeline=test_pipeline,
        backend_args=backend_args))
test_dataloader = val_dataloader

val_evaluator = dict(
    type='VOCMetric',
    metric='mAP',
    collect_device="gpu"
)
test_evaluator = val_evaluator

# training settings
max_epochs = 300
num_last_epochs = 15
interval = 10

train_cfg = dict(max_epochs=max_epochs, val_interval=interval)

# optimizer
# default 8 gpu
base_lr = 0.01
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(
        type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
        nesterov=True),
    paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))

# learning rate
param_scheduler = [
    dict(
        # use quadratic formula to warm up 5 epochs
        # and lr is updated by iteration
        # TODO: fix default scope in get function
        type='mmdet.QuadraticWarmupLR',
        by_epoch=True,
        begin=0,
        end=5,
        convert_to_iter_based=True),
    dict(
        # use cosine lr from 5 to 285 epoch
        type='CosineAnnealingLR',
        eta_min=base_lr * 0.05,
        begin=5,
        T_max=max_epochs - num_last_epochs,
        end=max_epochs - num_last_epochs,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        # use fixed lr during last 15 epochs
        type='ConstantLR',
        by_epoch=True,
        factor=1,
        begin=max_epochs - num_last_epochs,
        end=max_epochs,
    )
]

default_hooks = dict(
    checkpoint=dict(
        interval=interval,
        max_keep_ckpts=3  # only keep latest 3 checkpoints
    ))

custom_hooks = [
    dict(
        type='YOLOXModeSwitchHook',
        num_last_epochs=num_last_epochs,
        priority=48),
    dict(type='SyncNormHook', priority=48),
    dict(
        type='EMAHook',
        ema_type='ExpMomentumEMA',
        momentum=0.0001,
        update_buffers=True,
        priority=49)
]

# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (8 samples per GPU)
auto_scale_lr = dict(base_batch_size=64)
gitleej commented 10 months ago

is there any solution?@jbwang1997

liuchang0523 commented 9 months ago

My guess is num_workers set too highs

devwasabi commented 7 months ago

Could you figure out how to improve cpu and gpu utilization?

gitleej commented 3 months ago

Could you figure out how to improve cpu and gpu utilization?

No solution found.

gitleej commented 3 months ago

My guess is num_workers set too highs

My guess is num_workers set too highs

I have set it to 2. Still the same result.