open-mmlab / mmdetection

OpenMMLab Detection Toolbox and Benchmark
https://mmdetection.readthedocs.io
Apache License 2.0
29.67k stars 9.48k forks source link

Why is it that when I use faster-rcnn for inference or training, it just prints the feature shape and is done? #12042

Open kairenchen123 opened 2 days ago

kairenchen123 commented 2 days ago

Thanks for your error report and we appreciate it a lot.

Checklist

  1. I have searched related issues but cannot get the expected help.
  2. I have read the FAQ documentation but cannot get the expected help.
  3. The bug has not been fixed in the latest version.

Describe the bug when I use faster-rcnn for inference or training, it just prints the feature shape and is done

Reproduction

  1. What command or script did you run?

python -m torch.distributed.launch --nproc_per_node=1 --master_port=29500 tools/analysis_tools/benchmark.py \ configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \ --checkpoint checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \ --launcher pytorch

  1. Did you make any modifications on the code or config? Did you understand what you have modified? i do not modify it

  2. What dataset did you use? coco Environment

  3. Please run python mmdet/utils/collect_env.py to collect necessary environment information and paste it here. sys.platform: linux Python: 3.8.16 (default, Mar 2 2023, 03:21:46) [GCC 11.2.0] CUDA available: True numpy_random_seed: 2147483648 GPU 0,1: NVIDIA GeForce RTX 3090 CUDA_HOME: /usr/local/cuda-11.6 NVCC: Cuda compilation tools, release 11.6, V11.6.55 GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 PyTorch: 1.12.0 PyTorch compiling details: PyTorch built with:

    • GCC 9.3
    • C++ Version: 201402
    • Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
    • Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
    • OpenMP 201511 (a.k.a. OpenMP 4.5)
    • LAPACK is enabled (usually provided by MKL)
    • NNPACK is enabled
    • CPU capability usage: AVX2
    • CUDA Runtime 11.6
    • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
    • CuDNN 8.3.2 (built against CUDA 11.5)
    • Magma 2.6.1
    • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,

TorchVision: 0.13.0 OpenCV: 4.8.0 MMEngine: 0.8.4 MMDetection: 3.2.0+7cfc661

  1. You may add addition that may be helpful for locating the problem, such as
    • How you installed PyTorch [e.g., pip, conda, source]
    • conda pytorch 11.2
    • Other environment variables that may be related (such as $PATH, $LD_LIBRARY_PATH, $PYTHONPATH, etc.)

Error traceback

11/23 22:32:47 - mmengine - INFO - before build: 11/23 22:32:47 - mmengine - INFO - (GB) mem_used: 28.33 | uss: 0.22 | pss: 0.28 | total_proc: 1 Loads checkpoint by local backend from path: checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth /mnt/data2/ckr/mmdetection/mmdet/datasets/api_wrappers/coco_api.py:22: UserWarning: mmpycocotools is deprecated. Please install official pycocotools by "pip install pycocotools" warnings.warn( loading annotations into memory... Done (t=12.14s) creating index... index created! 11/23 22:33:03 - mmengine - INFO - after build: 11/23 22:33:03 - mmengine - INFO - (GB) mem_used: 29.60 | uss: 1.74 | pss: 1.79 | total_proc: 1 torch.Size([1, 256, 200, 304]) torch.Size([1, 512, 100, 152]) torch.Size([1, 1024, 50, 76]) torch.Size([1, 2048, 25, 38])

image

Bug fix If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!