Closed IISCAditayTripathi closed 4 years ago
I am training Faster-RCNN for ms-coco 2017. I am running the command as shown in title. But I am getting the following error:
2019-12-12 13:53:50,181 - INFO - Distributed training: False 2019-12-12 13:53:50,181 - INFO - MMDetection Version: 1.0.rc0+b7894cb 2019-12-12 13:53:50,181 - INFO - Config: # model settings model = dict( type='FasterRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.5, 1.0, 2.0], anchor_strides=[4, 8, 16, 32, 64], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=81, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05) ) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/faster_rcnn_r50_fpn_1x' load_from = None resume_from = None workflow = [('train', 1)] 2019-12-12 13:53:50,543 - INFO - load model from: torchvision://resnet50 2019-12-12 13:53:50,732 - WARNING - The model and loaded state dict do not match exactly unexpected key in source state_dict: fc.weight, fc.bias loading annotations into memory... Done (t=17.69s) creating index... index created! ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat', 'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush') 2019-12-12 13:54:14,240 - INFO - Start running, host: aditay@puri, work_dir: /scratche/home/aditay /mmdetection/work_dirs/faster_rcnn_r50_fpn_1x 2019-12-12 13:54:14,240 - INFO - workflow: [('train', 1)], max: 12 epochs THCudaCheck FAIL file=mmdet/ops/roi_align/src/roi_align_kernel.cu line=139 error=98 : unrecognized error code Traceback (most recent call last): File "tools/train.py", line 111, in <module> main() File "tools/train.py", line 107, in main logger=logger) File "/scratche/home/aditay/mmdetection/mmdet/apis/train.py", line 60, in train_detector _non_dist_train(model, dataset, cfg, validate=validate) File "/scratche/home/aditay/mmdetection/mmdet/apis/train.py", line 232, in _non_dist_train runner.run(data_loaders, cfg.workflow, cfg.total_epochs) File "/home/aditay/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/runner /runner.py", line 358, in run epoch_runner(data_loaders[i], **kwargs) File "/home/aditay/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/runner /runner.py", line 264, in train self.model, data_batch, train_mode=True, **kwargs) File "/scratche/home/aditay/mmdetection/mmdet/apis/train.py", line 38, in batch_processor losses = model(**data) File "/home/aditay/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/nn/modules /module.py", line 541, in __call__ result = self.forward(*input, **kwargs) File "/home/aditay/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/nn/parallel /data_parallel.py", line 150, in forward return self.module(*inputs[0], **kwargs[0]) File "/home/aditay/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/nn/modules /module.py", line 541, in __call__ result = self.forward(*input, **kwargs) File "/scratche/home/aditay/mmdetection/mmdet/core/fp16/decorators.py", line 49, in new_func return old_func(*args, **kwargs) File "/scratche/home/aditay/mmdetection/mmdet/models/detectors/base.py", line 117, in forward return self.forward_train(img, img_meta, **kwargs) File "/scratche/home/aditay/mmdetection/mmdet/models/detectors/two_stage.py", line 213, in forward_train x[:self.bbox_roi_extractor.num_inputs], rois) File "/home/aditay/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/nn/modules /module.py", line 541, in __call__ result = self.forward(*input, **kwargs) File "/scratche/home/aditay/mmdetection/mmdet/core/fp16/decorators.py", line 127, in new_func return old_func(*args, **kwargs) File "/scratche/home/aditay/mmdetection/mmdet/models/roi_extractors/single_level.py", line 105, in forward roi_feats_t = self.roi_layers[i](feats[i], rois_) File "/home/aditay/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/nn/modules /module.py", line 541, in __call__ result = self.forward(*input, **kwargs) File "/scratche/home/aditay/mmdetection/mmdet/ops/roi_align/roi_align.py", line 80, in forward self.sample_num) File "/scratche/home/aditay/mmdetection/mmdet/ops/roi_align/roi_align.py", line 26, in forward sample_num, output) RuntimeError: cuda runtime error (98) : unrecognized error code at mmdet/ops/roi_align /src/roi_align_kernel.cu:139 Segmentation fault (core dumped)
Hi @IISCAditayTripathi , Please use the Error Template. And check former issue https://github.com/open-mmlab/mmdetection/issues/24, https://github.com/open-mmlab/mmdetection/issues/229.
Error Template
I am training Faster-RCNN for ms-coco 2017. I am running the command as shown in title. But I am getting the following error: