I want to run faster-RCNN without RPN. It can The model can be trained, but with a WARNING.This model uses too much video memory, so I suspect it doesn't freeze the network layer.
There is my config.
2020-02-25 18:32:48,349 - INFO - Distributed training: False
2020-02-25 18:32:48,708 - INFO - load model from: torchvision://resnet101
2020-02-25 18:32:49,000 - WARNING - The model and loaded state dict do not match exactly
I want to run faster-RCNN without RPN. It can The model can be trained, but with a WARNING.This model uses too much video memory, so I suspect it doesn't freeze the network layer. There is my config.
There is my log.
2020-02-25 18:32:48,349 - INFO - Distributed training: False 2020-02-25 18:32:48,708 - INFO - load model from: torchvision://resnet101 2020-02-25 18:32:49,000 - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: layer4.0.conv1.weight, layer4.0.bn1.running_mean, layer4.0.bn1.running_var, layer4.0.bn1.weight, layer4.0.bn1.bias, layer4.0.conv2.weight, layer4.0.bn2.running_mean, layer4.0.bn2.running_var, layer4.0.bn2.weight, layer4.0.bn2.bias, layer4.0.conv3.weight, layer4.0.bn3.running_mean, layer4.0.bn3.running_var, layer4.0.bn3.weight, layer4.0.bn3.bias, layer4.0.downsample.0.weight, layer4.0.downsample.1.running_mean, layer4.0.downsample.1.running_var, layer4.0.downsample.1.weight, layer4.0.downsample.1.bias, layer4.1.conv1.weight, layer4.1.bn1.running_mean, layer4.1.bn1.running_var, layer4.1.bn1.weight, layer4.1.bn1.bias, layer4.1.conv2.weight, layer4.1.bn2.running_mean, layer4.1.bn2.running_var, layer4.1.bn2.weight, layer4.1.bn2.bias, layer4.1.conv3.weight, layer4.1.bn3.running_mean, layer4.1.bn3.running_var, layer4.1.bn3.weight, layer4.1.bn3.bias, layer4.2.conv1.weight, layer4.2.bn1.running_mean, layer4.2.bn1.running_var, layer4.2.bn1.weight, layer4.2.bn1.bias, layer4.2.conv2.weight, layer4.2.bn2.running_mean, layer4.2.bn2.running_var, layer4.2.bn2.weight, layer4.2.bn2.bias, layer4.2.conv3.weight, layer4.2.bn3.running_mean, layer4.2.bn3.running_var, layer4.2.bn3.weight, layer4.2.bn3.bias, fc.weight, fc.bias
2020-02-25 18:32:49,276 - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: conv1.weight, bn1.running_mean, bn1.running_var, bn1.weight, bn1.bias, layer1.0.conv1.weight, layer1.0.bn1.running_mean, layer1.0.bn1.running_var, layer1.0.bn1.weight, layer1.0.bn1.bias, layer1.0.conv2.weight, layer1.0.bn2.running_mean, layer1.0.bn2.running_var, layer1.0.bn2.weight, layer1.0.bn2.bias, layer1.0.conv3.weight, layer1.0.bn3.running_mean, layer1.0.bn3.running_var, layer1.0.bn3.weight, layer1.0.bn3.bias, layer1.0.downsample.0.weight, layer1.0.downsample.1.running_mean, layer1.0.downsample.1.running_var, layer1.0.downsample.1.weight, layer1.0.downsample.1.bias, layer1.1.conv1.weight, layer1.1.bn1.running_mean, layer1.1.bn1.running_var, layer1.1.bn1.weight, layer1.1.bn1.bias, layer1.1.conv2.weight, layer1.1.bn2.running_mean, layer1.1.bn2.running_var, layer1.1.bn2.weight, layer1.1.bn2.bias, layer1.1.conv3.weight, layer1.1.bn3.running_mean, layer1.1.bn3.running_var, layer1.1.bn3.weight, layer1.1.bn3.bias, layer1.2.conv1.weight, layer1.2.bn1.running_mean, layer1.2.bn1.running_var, layer1.2.bn1.weight, layer1.2.bn1.bias, layer1.2.conv2.weight, layer1.2.bn2.running_mean, layer1.2.bn2.running_var, layer1.2.bn2.weight, layer1.2.bn2.bias, layer1.2.conv3.weight, layer1.2.bn3.running_mean, layer1.2.bn3.running_var, layer1.2.bn3.weight, layer1.2.bn3.bias, layer2.0.conv1.weight, layer2.0.bn1.running_mean, layer2.0.bn1.running_var, layer2.0.bn1.weight, layer2.0.bn1.bias, layer2.0.conv2.weight, layer2.0.bn2.running_mean, layer2.0.bn2.running_var, layer2.0.bn2.weight, layer2.0.bn2.bias, layer2.0.conv3.weight, layer2.0.bn3.running_mean, layer2.0.bn3.running_var, layer2.0.bn3.weight, layer2.0.bn3.bias, layer2.0.downsample.0.weight, layer2.0.downsample.1.running_mean, layer2.0.downsample.1.running_var, layer2.0.downsample.1.weight, layer2.0.downsample.1.bias, layer2.1.conv1.weight, layer2.1.bn1.running_mean, layer2.1.bn1.running_var, layer2.1.bn1.weight, layer2.1.bn1.bias, layer2.1.conv2.weight, layer2.1.bn2.running_mean, layer2.1.bn2.running_var, layer2.1.bn2.weight, layer2.1.bn2.bias, layer2.1.conv3.weight, layer2.1.bn3.running_mean, layer2.1.bn3.running_var, layer2.1.bn3.weight, layer2.1.bn3.bias, layer2.2.conv1.weight, layer2.2.bn1.running_mean, layer2.2.bn1.running_var, layer2.2.bn1.weight, layer2.2.bn1.bias, layer2.2.conv2.weight, layer2.2.bn2.running_mean, layer2.2.bn2.running_var, layer2.2.bn2.weight, layer2.2.bn2.bias, layer2.2.conv3.weight, layer2.2.bn3.running_mean, layer2.2.bn3.running_var, layer2.2.bn3.weight, layer2.2.bn3.bias, layer2.3.conv1.weight, layer2.3.bn1.running_mean, layer2.3.bn1.running_var, layer2.3.bn1.weight, layer2.3.bn1.bias, layer2.3.conv2.weight, layer2.3.bn2.running_mean, layer2.3.bn2.running_var, layer2.3.bn2.weight, layer2.3.bn2.bias, layer2.3.conv3.weight, layer2.3.bn3.running_mean, layer2.3.bn3.running_var, layer2.3.bn3.weight, layer2.3.bn3.bias, layer3.0.conv1.weight, layer3.0.bn1.running_mean, layer3.0.bn1.running_var, layer3.0.bn1.weight, layer3.0.bn1.bias, layer3.0.conv2.weight, layer3.0.bn2.running_mean, layer3.0.bn2.running_var, layer3.0.bn2.weight, layer3.0.bn2.bias, layer3.0.conv3.weight, layer3.0.bn3.running_mean, layer3.0.bn3.running_var, layer3.0.bn3.weight, layer3.0.bn3.bias, layer3.0.downsample.0.weight, layer3.0.downsample.1.running_mean, layer3.0.downsample.1.running_var, layer3.0.downsample.1.weight, layer3.0.downsample.1.bias, layer3.1.conv1.weight, layer3.1.bn1.running_mean, layer3.1.bn1.running_var, layer3.1.bn1.weight, layer3.1.bn1.bias, layer3.1.conv2.weight, layer3.1.bn2.running_mean, layer3.1.bn2.running_var, layer3.1.bn2.weight, layer3.1.bn2.bias, layer3.1.conv3.weight, layer3.1.bn3.running_mean, layer3.1.bn3.running_var, layer3.1.bn3.weight, layer3.1.bn3.bias, layer3.2.conv1.weight, layer3.2.bn1.running_mean, layer3.2.bn1.running_var, layer3.2.bn1.weight, layer3.2.bn1.bias, layer3.2.conv2.weight, layer3.2.bn2.running_mean, layer3.2.bn2.running_var, layer3.2.bn2.weight, layer3.2.bn2.bias, layer3.2.conv3.weight, layer3.2.bn3.running_mean, layer3.2.bn3.running_var, layer3.2.bn3.weight, layer3.2.bn3.bias, layer3.3.conv1.weight, layer3.3.bn1.running_mean, layer3.3.bn1.running_var, layer3.3.bn1.weight, layer3.3.bn1.bias, layer3.3.conv2.weight, layer3.3.bn2.running_mean, layer3.3.bn2.running_var, layer3.3.bn2.weight, layer3.3.bn2.bias, layer3.3.conv3.weight, layer3.3.bn3.running_mean, layer3.3.bn3.running_var, layer3.3.bn3.weight, layer3.3.bn3.bias, layer3.4.conv1.weight, layer3.4.bn1.running_mean, layer3.4.bn1.running_var, layer3.4.bn1.weight, layer3.4.bn1.bias, layer3.4.conv2.weight, layer3.4.bn2.running_mean, layer3.4.bn2.running_var, layer3.4.bn2.weight, layer3.4.bn2.bias, layer3.4.conv3.weight, layer3.4.bn3.running_mean, layer3.4.bn3.running_var, layer3.4.bn3.weight, layer3.4.bn3.bias, layer3.5.conv1.weight, layer3.5.bn1.running_mean, layer3.5.bn1.running_var, layer3.5.bn1.weight, layer3.5.bn1.bias, layer3.5.conv2.weight, layer3.5.bn2.running_mean, layer3.5.bn2.running_var, layer3.5.bn2.weight, layer3.5.bn2.bias, layer3.5.conv3.weight, layer3.5.bn3.running_mean, layer3.5.bn3.running_var, layer3.5.bn3.weight, layer3.5.bn3.bias, layer3.6.conv1.weight, layer3.6.bn1.running_mean, layer3.6.bn1.running_var, layer3.6.bn1.weight, layer3.6.bn1.bias, layer3.6.conv2.weight, layer3.6.bn2.running_mean, layer3.6.bn2.running_var, layer3.6.bn2.weight, layer3.6.bn2.bias, layer3.6.conv3.weight, layer3.6.bn3.running_mean, layer3.6.bn3.running_var, layer3.6.bn3.weight, layer3.6.bn3.bias, layer3.7.conv1.weight, layer3.7.bn1.running_mean, layer3.7.bn1.running_var, layer3.7.bn1.weight, layer3.7.bn1.bias, layer3.7.conv2.weight, layer3.7.bn2.running_mean, layer3.7.bn2.running_var, layer3.7.bn2.weight, layer3.7.bn2.bias, layer3.7.conv3.weight, layer3.7.bn3.running_mean, layer3.7.bn3.running_var, layer3.7.bn3.weight, layer3.7.bn3.bias, layer3.8.conv1.weight, layer3.8.bn1.running_mean, layer3.8.bn1.running_var, layer3.8.bn1.weight, layer3.8.bn1.bias, layer3.8.conv2.weight, layer3.8.bn2.running_mean, layer3.8.bn2.running_var, layer3.8.bn2.weight, layer3.8.bn2.bias, layer3.8.conv3.weight, layer3.8.bn3.running_mean, layer3.8.bn3.running_var, layer3.8.bn3.weight, layer3.8.bn3.bias, layer3.9.conv1.weight, layer3.9.bn1.running_mean, layer3.9.bn1.running_var, layer3.9.bn1.weight, layer3.9.bn1.bias, layer3.9.conv2.weight, layer3.9.bn2.running_mean, layer3.9.bn2.running_var, layer3.9.bn2.weight, layer3.9.bn2.bias, layer3.9.conv3.weight, layer3.9.bn3.running_mean, layer3.9.bn3.running_var, layer3.9.bn3.weight, layer3.9.bn3.bias, layer3.10.conv1.weight, layer3.10.bn1.running_mean, layer3.10.bn1.running_var, layer3.10.bn1.weight, layer3.10.bn1.bias, layer3.10.conv2.weight, layer3.10.bn2.running_mean, layer3.10.bn2.running_var, layer3.10.bn2.weight, layer3.10.bn2.bias, layer3.10.conv3.weight, layer3.10.bn3.running_mean, layer3.10.bn3.running_var, layer3.10.bn3.weight, layer3.10.bn3.bias, layer3.11.conv1.weight, layer3.11.bn1.running_mean, layer3.11.bn1.running_var, layer3.11.bn1.weight, layer3.11.bn1.bias, layer3.11.conv2.weight, layer3.11.bn2.running_mean, layer3.11.bn2.running_var, layer3.11.bn2.weight, layer3.11.bn2.bias, layer3.11.conv3.weight, layer3.11.bn3.running_mean, layer3.11.bn3.running_var, layer3.11.bn3.weight, layer3.11.bn3.bias, layer3.12.conv1.weight, layer3.12.bn1.running_mean, layer3.12.bn1.running_var, layer3.12.bn1.weight, layer3.12.bn1.bias, layer3.12.conv2.weight, layer3.12.bn2.running_mean, layer3.12.bn2.running_var, layer3.12.bn2.weight, layer3.12.bn2.bias, layer3.12.conv3.weight, layer3.12.bn3.running_mean, layer3.12.bn3.running_var, layer3.12.bn3.weight, layer3.12.bn3.bias, layer3.13.conv1.weight, layer3.13.bn1.running_mean, layer3.13.bn1.running_var, layer3.13.bn1.weight, layer3.13.bn1.bias, layer3.13.conv2.weight, layer3.13.bn2.running_mean, layer3.13.bn2.running_var, layer3.13.bn2.weight, layer3.13.bn2.bias, layer3.13.conv3.weight, layer3.13.bn3.running_mean, layer3.13.bn3.running_var, layer3.13.bn3.weight, layer3.13.bn3.bias, layer3.14.conv1.weight, layer3.14.bn1.running_mean, layer3.14.bn1.running_var, layer3.14.bn1.weight, layer3.14.bn1.bias, layer3.14.conv2.weight, layer3.14.bn2.running_mean, layer3.14.bn2.running_var, layer3.14.bn2.weight, layer3.14.bn2.bias, layer3.14.conv3.weight, layer3.14.bn3.running_mean, layer3.14.bn3.running_var, layer3.14.bn3.weight, layer3.14.bn3.bias, layer3.15.conv1.weight, layer3.15.bn1.running_mean, layer3.15.bn1.running_var, layer3.15.bn1.weight, layer3.15.bn1.bias, layer3.15.conv2.weight, layer3.15.bn2.running_mean, layer3.15.bn2.running_var, layer3.15.bn2.weight, layer3.15.bn2.bias, layer3.15.conv3.weight, layer3.15.bn3.running_mean, layer3.15.bn3.running_var, layer3.15.bn3.weight, layer3.15.bn3.bias, layer3.16.conv1.weight, layer3.16.bn1.running_mean, layer3.16.bn1.running_var, layer3.16.bn1.weight, layer3.16.bn1.bias, layer3.16.conv2.weight, layer3.16.bn2.running_mean, layer3.16.bn2.running_var, layer3.16.bn2.weight, layer3.16.bn2.bias, layer3.16.conv3.weight, layer3.16.bn3.running_mean, layer3.16.bn3.running_var, layer3.16.bn3.weight, layer3.16.bn3.bias, layer3.17.conv1.weight, layer3.17.bn1.running_mean, layer3.17.bn1.running_var, layer3.17.bn1.weight, layer3.17.bn1.bias, layer3.17.conv2.weight, layer3.17.bn2.running_mean, layer3.17.bn2.running_var, layer3.17.bn2.weight, layer3.17.bn2.bias, layer3.17.conv3.weight, layer3.17.bn3.running_mean, layer3.17.bn3.running_var, layer3.17.bn3.weight, layer3.17.bn3.bias, layer3.18.conv1.weight, layer3.18.bn1.running_mean, layer3.18.bn1.running_var, layer3.18.bn1.weight, layer3.18.bn1.bias, layer3.18.conv2.weight, layer3.18.bn2.running_mean, layer3.18.bn2.running_var, layer3.18.bn2.weight, layer3.18.bn2.bias, layer3.18.conv3.weight, layer3.18.bn3.running_mean, layer3.18.bn3.running_var, layer3.18.bn3.weight, layer3.18.bn3.bias, layer3.19.conv1.weight, layer3.19.bn1.running_mean, layer3.19.bn1.running_var, layer3.19.bn1.weight, layer3.19.bn1.bias, layer3.19.conv2.weight, layer3.19.bn2.running_mean, layer3.19.bn2.running_var, layer3.19.bn2.weight, layer3.19.bn2.bias, layer3.19.conv3.weight, layer3.19.bn3.running_mean, layer3.19.bn3.running_var, layer3.19.bn3.weight, layer3.19.bn3.bias, layer3.20.conv1.weight, layer3.20.bn1.running_mean, layer3.20.bn1.running_var, layer3.20.bn1.weight, layer3.20.bn1.bias, layer3.20.conv2.weight, layer3.20.bn2.running_mean, layer3.20.bn2.running_var, layer3.20.bn2.weight, layer3.20.bn2.bias, layer3.20.conv3.weight, layer3.20.bn3.running_mean, layer3.20.bn3.running_var, layer3.20.bn3.weight, layer3.20.bn3.bias, layer3.21.conv1.weight, layer3.21.bn1.running_mean, layer3.21.bn1.running_var, layer3.21.bn1.weight, layer3.21.bn1.bias, layer3.21.conv2.weight, layer3.21.bn2.running_mean, layer3.21.bn2.running_var, layer3.21.bn2.weight, layer3.21.bn2.bias, layer3.21.conv3.weight, layer3.21.bn3.running_mean, layer3.21.bn3.running_var, layer3.21.bn3.weight, layer3.21.bn3.bias, layer3.22.conv1.weight, layer3.22.bn1.running_mean, layer3.22.bn1.running_var, layer3.22.bn1.weight, layer3.22.bn1.bias, layer3.22.conv2.weight, layer3.22.bn2.running_mean, layer3.22.bn2.running_var, layer3.22.bn2.weight, layer3.22.bn2.bias, layer3.22.conv3.weight, layer3.22.bn3.running_mean, layer3.22.bn3.running_var, layer3.22.bn3.weight, layer3.22.bn3.bias, fc.weight, fc.bias