Closed liuyanzhi1214 closed 3 years ago
@liuyanzhi1214 hi, You can refer to the FPN
The implementation follows the description and official code release of FPN. The issue is closed as the question seems to be answered. Feel free to reopen it if you have any further questions.
rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared4Conv1FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=2, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0), conv_out_channels=256, norm_cfg=dict(type='BN', requires_grad=True)))) the FPN output 5 level(p2-p6),why there are only 4 level be uesd in roi_extractor?