open-mmlab / mmdetection

OpenMMLab Detection Toolbox and Benchmark
https://mmdetection.readthedocs.io
Apache License 2.0
29.62k stars 9.47k forks source link

mAP classes do not match my own classes #5000

Closed oreo-lp closed 3 years ago

oreo-lp commented 3 years ago

my dataset classes are classes = ('wajueji', 'zhatuche', 'yaluji',) but when I test my dataset, the mAP classes are as follows: +-----------+-------+--------+--------+-------+ | class | gts | dets | recall | ap | +-----------+-------+--------+--------+-------+ | aeroplane | 476 | 603 | 0.996 | 0.909 | | bicycle | 24 | 95 | 1.00 | 0.982 | | bird | 320 | 394 | 0.991 | 0.909 | +-----------+-------+--------+--------+-------+ | mAP | | | | 0.660 | +-----------+-------+--------+--------+-------+

and my dataset type is VOC2007,my configs are:

`model = dict( type='FasterRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=4, # 自己的类别 bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.5, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100) ))

dataset_type = 'VOCDataset' classes = ('wajueji', 'zhatuche', 'yaluji',) data = dict( samples_per_gpu=2, # 修改batch size workers_per_gpu=1, train=dict( type='VOCDataset', classes=classes, img_prefix='data/VOC2007/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ], ann_file='data/VOC2007/ImageSets/Main/train.txt'), val=dict( type='VOCDataset', classes=classes, img_prefix='data/VOC2007/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ], ann_file='data/VOC2007/ImageSets/Main/val.txt'), test=dict( type='VOCDataset', classes=classes, img_prefix='data/VOC2007/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ], ann_file='data/VOC2007/ImageSets/Main/val.txt'))

load_from = 'checkpoints/faster_rcnn_r50_fpn_1x_coco.pth' workflow = [('train', 1), ('val', 1)] checkpoint_config = dict(interval=1) log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict(type='TensorboardLoggerHook') ]) evaluation = dict(iou_thr=[0.6], interval=1, metric='mAP') optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) total_epochs = 50 dist_params = dict(backend='nccl') log_level = 'INFO' resume_from = None work_dir = './work_dirs/faster_rcnn_r50_fpn_1x_voc2021' gpu_ids = range(0, 1)`

HenryOsborne commented 3 years ago

Do you modify the voc_classes function in mmdet/core/evaluation/class_names.py?

oreo-lp commented 3 years ago

Do you modify the voc_classes function in mmdet/core/evaluation/class_names.py?

It works, thank you!