open-mmlab / mmdetection3d

OpenMMLab's next-generation platform for general 3D object detection.
https://mmdetection3d.readthedocs.io/en/latest/
Apache License 2.0
5.34k stars 1.55k forks source link

[Bug] nuscenes评估报错 #3037

Open 2000lf opened 2 months ago

2000lf commented 2 months ago

Prerequisite

Task

I'm using the official example scripts/configs for the officially supported tasks/models/datasets.

Branch

main branch https://github.com/open-mmlab/mmdetection3d

Environment

System environment: sys.platform: linux Python: 3.8.19 (default, Mar 20 2024, 19:58:24) [GCC 11.2.0] CUDA available: True MUSA available: False numpy_random_seed: 1514969306 GPU 0,1: NVIDIA A30 CUDA_HOME: /home/shiying/luofan/CUDA/cuda11.8 NVCC: Cuda compilation tools, release 11.8, V11.8.89 GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 PyTorch: 2.0.0+cu118 PyTorch compiling details: PyTorch built with:

Runtime environment: cudnn_benchmark: False mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: 1514969306 Distributed launcher: pytorch Distributed training: True GPU number: 1

Reproduces the problem - code sample

1

Reproduces the problem - command or script

bash tools/dist_train.sh projects/BEVFusion/configs/only_lidar.py 1

Reproduces the problem - error message

Formating bboxes of pred_instances_3d Start to convert detection format... [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 13.4 task/s, elapsed: 6s, ETA: 0s Results writes to /tmp/tmpzqmyl7iy/results/pred_instances_3d/results_nusc.json Evaluating bboxes of pred_instances_3d Traceback (most recent call last): File "tools/train.py", line 135, in main() File "tools/train.py", line 131, in main runner.train() File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1777, in train model = self.train_loop.run() # type: ignore File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 103, in run self.runner.val_loop.run() File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 376, in run metrics = self.evaluator.evaluate(len(self.dataloader.dataset)) File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/evaluator.py", line 79, in evaluate _results = metric.evaluate(size) File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/metric.py", line 133, in evaluate _metrics = self.compute_metrics(results) # type: ignore File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 177, in compute_metrics ap_dict = self.nus_evaluate( File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 207, in nus_evaluate ret_dict = self._evaluate_single( File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 233, in _evaluate_single nusc = NuScenes( File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/nuscenes/nuscenes.py", line 62, in init assert osp.exists(self.table_root), 'Database version not found: {}'.format(self.table_root) AssertionError: Database version not found: data/nuscenes/v1.0-trainval

Additional information

I use bevfusion to train nuscenes-mini ,when finish training,it failed to evaluate.

ljcpp commented 4 days ago

what wrong