Formating bboxes of pred_instances_3d
Start to convert detection format...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 13.4 task/s, elapsed: 6s, ETA: 0s
Results writes to /tmp/tmpzqmyl7iy/results/pred_instances_3d/results_nusc.json
Evaluating bboxes of pred_instances_3d
Traceback (most recent call last):
File "tools/train.py", line 135, in
main()
File "tools/train.py", line 131, in main
runner.train()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1777, in train
model = self.train_loop.run() # type: ignore
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 103, in run
self.runner.val_loop.run()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 376, in run
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/evaluator.py", line 79, in evaluate
_results = metric.evaluate(size)
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/metric.py", line 133, in evaluate
_metrics = self.compute_metrics(results) # type: ignore
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 177, in compute_metrics
ap_dict = self.nus_evaluate(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 207, in nus_evaluate
ret_dict = self._evaluate_single(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 233, in _evaluate_single
nusc = NuScenes(
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/nuscenes/nuscenes.py", line 62, in init
assert osp.exists(self.table_root), 'Database version not found: {}'.format(self.table_root)
AssertionError: Database version not found: data/nuscenes/v1.0-trainval
Additional information
I use bevfusion to train nuscenes-mini ,when finish training,it failed to evaluate.
Prerequisite
Task
I'm using the official example scripts/configs for the officially supported tasks/models/datasets.
Branch
main branch https://github.com/open-mmlab/mmdetection3d
Environment
System environment: sys.platform: linux Python: 3.8.19 (default, Mar 20 2024, 19:58:24) [GCC 11.2.0] CUDA available: True MUSA available: False numpy_random_seed: 1514969306 GPU 0,1: NVIDIA A30 CUDA_HOME: /home/shiying/luofan/CUDA/cuda11.8 NVCC: Cuda compilation tools, release 11.8, V11.8.89 GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 PyTorch: 2.0.0+cu118 PyTorch compiling details: PyTorch built with:
Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.15.1+cu118 OpenCV: 4.10.0 MMEngine: 0.10.4
Runtime environment: cudnn_benchmark: False mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: 1514969306 Distributed launcher: pytorch Distributed training: True GPU number: 1
Reproduces the problem - code sample
1
Reproduces the problem - command or script
bash tools/dist_train.sh projects/BEVFusion/configs/only_lidar.py 1
Reproduces the problem - error message
Formating bboxes of pred_instances_3d Start to convert detection format... [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 81/81, 13.4 task/s, elapsed: 6s, ETA: 0s Results writes to /tmp/tmpzqmyl7iy/results/pred_instances_3d/results_nusc.json Evaluating bboxes of pred_instances_3d Traceback (most recent call last): File "tools/train.py", line 135, in
main()
File "tools/train.py", line 131, in main
runner.train()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1777, in train
model = self.train_loop.run() # type: ignore
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 103, in run
self.runner.val_loop.run()
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/runner/loops.py", line 376, in run
metrics = self.evaluator.evaluate(len(self.dataloader.dataset))
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/evaluator.py", line 79, in evaluate
_results = metric.evaluate(size)
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/mmengine/evaluator/metric.py", line 133, in evaluate
_metrics = self.compute_metrics(results) # type: ignore
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 177, in compute_metrics
ap_dict = self.nus_evaluate(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 207, in nus_evaluate
ret_dict = self._evaluate_single(
File "/home/shiying/luofan/Testmb/mmdet3d/evaluation/metrics/nuscenes_metric.py", line 233, in _evaluate_single
nusc = NuScenes(
File "/home/shiying/zjx/envs/anaconda3/envs/testmb1/lib/python3.8/site-packages/nuscenes/nuscenes.py", line 62, in init
assert osp.exists(self.table_root), 'Database version not found: {}'.format(self.table_root)
AssertionError: Database version not found: data/nuscenes/v1.0-trainval
Additional information
I use bevfusion to train nuscenes-mini ,when finish training,it failed to evaluate.