Closed vansinhu closed 1 year ago
(rtmpose) PS D:\users\moons\code\mmpose> python .\tools\train.py .\configs\body_2d_keypoint\rtmpose\coco\rtmpose-m_8xb256-420e_coco-256x192.py 04/01 11:21:15 - mmengine - INFO - ------------------------------------------------------------ System environment: sys.platform: win32 Python: 3.9.16 (main, Mar 8 2023, 10:39:24) [MSC v.1916 64 bit (AMD64)] CUDA available: True numpy_random_seed: 21 GPU 0: NVIDIA GeForce GTX 1660 Ti CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8 NVCC: Cuda compilation tools, release 11.8, V11.8.89 MSVC: 用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.29.30148 版 GCC: n/a PyTorch: 1.10.1+cu113 PyTorch compiling details: PyTorch built with: - C++ Version: 199711 - MSVC 192829337 - Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740) - OpenMP 2019 - LAPACK is enabled (usually provided by MKL) - CPU capability usage: AVX512 - CUDA Runtime 11.3 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.2 - Magma 2.5.4 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/w/b/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/w/b/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, TorchVision: 0.11.2+cu113 OpenCV: 4.7.0 MMEngine: 0.7.0 Runtime environment: cudnn_benchmark: False mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: 21 Distributed launcher: none Distributed training: False GPU number: 1 ------------------------------------------------------------ 04/01 11:21:16 - mmengine - INFO - Config: default_scope = 'mmpose' default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=1), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict( type='CheckpointHook', interval=10, save_best='coco/AP', rule='greater', max_keep_ckpts=1), sampler_seed=dict(type='DistSamplerSeedHook'), visualization=dict(type='PoseVisualizationHook', enable=False)) custom_hooks = [ dict( type='EMAHook', ema_type='ExpMomentumEMA', momentum=0.0002, update_buffers=True, priority=49), dict( type='mmdet.PipelineSwitchHook', switch_epoch=390, switch_pipeline=[ dict(type='LoadImage', backend_args=dict(backend='local')), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict( type='RandomBBoxTransform', shift_factor=0.0, scale_factor=[0.75, 1.25], rotate_factor=60), dict(type='TopdownAffine', input_size=(192, 256)), dict(type='mmdet.YOLOXHSVRandomAug'), dict( type='Albumentation', transforms=[ dict(type='Blur', p=0.1), dict(type='MedianBlur', p=0.1), dict( type='CoarseDropout', max_holes=1, max_height=0.4, max_width=0.4, min_holes=1, min_height=0.2, min_width=0.2, p=0.5) ]), dict( type='GenerateTarget', encoder=dict( type='SimCCLabel', input_size=(192, 256), sigma=(4.9, 5.66), simcc_split_ratio=2.0, normalize=False, use_dark=False)), dict(type='PackPoseInputs') ]) ] env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl')) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='PoseLocalVisualizer', vis_backends=[dict(type='LocalVisBackend')], name='visualizer') log_processor = dict( type='LogProcessor', window_size=50, by_epoch=True, num_digits=6) log_level = 'INFO' load_from = None resume = False backend_args = dict(backend='local') train_cfg = dict(by_epoch=True, max_epochs=420, val_interval=10) val_cfg = dict() test_cfg = dict() max_epochs = 420 stage2_num_epochs = 30 base_lr = 0.004 randomness = dict(seed=21) optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=0.004, weight_decay=0.05), paramwise_cfg=dict( norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) param_scheduler = [ dict( type='LinearLR', start_factor=1e-05, by_epoch=False, begin=0, end=1000), dict( type='CosineAnnealingLR', eta_min=0.0002, begin=210, end=420, T_max=210, by_epoch=True, convert_to_iter_based=True) ] auto_scale_lr = dict(base_batch_size=1024) codec = dict( type='SimCCLabel', input_size=(192, 256), sigma=(4.9, 5.66), simcc_split_ratio=2.0, normalize=False, use_dark=False) model = dict( type='TopdownPoseEstimator', data_preprocessor=dict( type='PoseDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( _scope_='mmdet', type='CSPNeXt', arch='P5', expand_ratio=0.5, deepen_factor=0.67, widen_factor=0.75, out_indices=(4, ), channel_attention=True, norm_cfg=dict(type='SyncBN'), act_cfg=dict(type='SiLU'), init_cfg=dict( type='Pretrained', prefix='backbone.', checkpoint= 'https://download.openmmlab.com/mmpose/v1/projects/rtmpose/cspnext-m_udp-aic-coco_210e-256x192-f2f7d6f6_20230130.pth' )), head=dict( type='RTMCCHead', in_channels=768, out_channels=3, input_size=(192, 256), in_featuremap_size=(6, 8), simcc_split_ratio=2.0, final_layer_kernel_size=7, gau_cfg=dict( hidden_dims=256, s=128, expansion_factor=2, dropout_rate=0.0, drop_path=0.0, act_fn='SiLU', use_rel_bias=False, pos_enc=False), loss=dict( type='KLDiscretLoss', use_target_weight=True, beta=10.0, label_softmax=True), decoder=dict( type='SimCCLabel', input_size=(192, 256), sigma=(4.9, 5.66), simcc_split_ratio=2.0, normalize=False, use_dark=False)), test_cfg=dict(flip_test=True)) dataset_type = 'CocoDataset' data_mode = 'topdown' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImage', backend_args=dict(backend='local')), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict( type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80), dict(type='TopdownAffine', input_size=(192, 256)), dict(type='mmdet.YOLOXHSVRandomAug'), dict( type='Albumentation', transforms=[ dict(type='Blur', p=0.1), dict(type='MedianBlur', p=0.1), dict( type='CoarseDropout', max_holes=1, max_height=0.4, max_width=0.4, min_holes=1, min_height=0.2, min_width=0.2, p=1.0) ]), dict( type='GenerateTarget', encoder=dict( type='SimCCLabel', input_size=(192, 256), sigma=(4.9, 5.66), simcc_split_ratio=2.0, normalize=False, use_dark=False)), dict(type='PackPoseInputs') ] val_pipeline = [ dict(type='LoadImage', backend_args=dict(backend='local')), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=(192, 256)), dict(type='PackPoseInputs') ] train_pipeline_stage2 = [ dict(type='LoadImage', backend_args=dict(backend='local')), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict( type='RandomBBoxTransform', shift_factor=0.0, scale_factor=[0.75, 1.25], rotate_factor=60), dict(type='TopdownAffine', input_size=(192, 256)), dict(type='mmdet.YOLOXHSVRandomAug'), dict( type='Albumentation', transforms=[ dict(type='Blur', p=0.1), dict(type='MedianBlur', p=0.1), dict( type='CoarseDropout', max_holes=1, max_height=0.4, max_width=0.4, min_holes=1, min_height=0.2, min_width=0.2, p=0.5) ]), dict( type='GenerateTarget', encoder=dict( type='SimCCLabel', input_size=(192, 256), sigma=(4.9, 5.66), simcc_split_ratio=2.0, normalize=False, use_dark=False)), dict(type='PackPoseInputs') ] train_dataloader = dict( batch_size=2, num_workers=1, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='CocoDataset', data_root='data/coco/', data_mode='topdown', ann_file='annotations/person_keypoints_train2017.json', data_prefix=dict(img='train2017/'), pipeline=[ dict(type='LoadImage', backend_args=dict(backend='local')), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict( type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80), dict(type='TopdownAffine', input_size=(192, 256)), dict(type='mmdet.YOLOXHSVRandomAug'), dict( type='Albumentation', transforms=[ dict(type='Blur', p=0.1), dict(type='MedianBlur', p=0.1), dict( type='CoarseDropout', max_holes=1, max_height=0.4, max_width=0.4, min_holes=1, min_height=0.2, min_width=0.2, p=1.0) ]), dict( type='GenerateTarget', encoder=dict( type='SimCCLabel', input_size=(192, 256), sigma=(4.9, 5.66), simcc_split_ratio=2.0, normalize=False, use_dark=False)), dict(type='PackPoseInputs') ])) val_dataloader = dict( batch_size=2, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), dataset=dict( type='CocoDataset', data_root='data/coco/', data_mode='topdown', ann_file='annotations/person_keypoints_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=[ dict(type='LoadImage', backend_args=dict(backend='local')), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=(192, 256)), dict(type='PackPoseInputs') ])) test_dataloader = dict( batch_size=2, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), dataset=dict( type='CocoDataset', data_root='data/coco/', data_mode='topdown', ann_file='annotations/person_keypoints_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=[ dict(type='LoadImage', backend_args=dict(backend='local')), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=(192, 256)), dict(type='PackPoseInputs') ])) val_evaluator = dict( type='CocoMetric', ann_file='data/coco/annotations/person_keypoints_val2017.json') test_evaluator = dict( type='CocoMetric', ann_file='data/coco/annotations/person_keypoints_val2017.json') launcher = 'none' work_dir = './work_dirs\\rtmpose-m_8xb256-420e_coco-256x192' 04/01 11:21:18 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used. 04/01 11:21:18 - mmengine - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) RuntimeInfoHook (49 ) EMAHook (BELOW_NORMAL) LoggerHook -------------------- after_load_checkpoint: (49 ) EMAHook -------------------- before_train: (VERY_HIGH ) RuntimeInfoHook (49 ) EMAHook (NORMAL ) IterTimerHook (VERY_LOW ) CheckpointHook -------------------- before_train_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (NORMAL ) DistSamplerSeedHook (NORMAL ) PipelineSwitchHook -------------------- before_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook -------------------- after_train_iter: (VERY_HIGH ) RuntimeInfoHook (49 ) EMAHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- after_train_epoch: (NORMAL ) IterTimerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- before_val_epoch: (49 ) EMAHook (NORMAL ) IterTimerHook -------------------- before_val_iter: (NORMAL ) IterTimerHook -------------------- after_val_iter: (NORMAL ) IterTimerHook (NORMAL ) PoseVisualizationHook (BELOW_NORMAL) LoggerHook -------------------- after_val_epoch: (VERY_HIGH ) RuntimeInfoHook (49 ) EMAHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- before_save_checkpoint: (49 ) EMAHook -------------------- before_test_epoch: (49 ) EMAHook (NORMAL ) IterTimerHook -------------------- before_test_iter: (NORMAL ) IterTimerHook -------------------- after_test_iter: (NORMAL ) IterTimerHook (NORMAL ) PoseVisualizationHook (BELOW_NORMAL) LoggerHook -------------------- after_test_epoch: (VERY_HIGH ) RuntimeInfoHook (49 ) EMAHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook -------------------- after_run: (BELOW_NORMAL) LoggerHook -------------------- d:\users\moons\code\mmpose\mmpose\datasets\transforms\common_transforms.py:648: UserWarning: Blur is not pixel-level transformations. Please use with caution. warnings.warn( d:\users\moons\code\mmpose\mmpose\datasets\transforms\common_transforms.py:648: UserWarning: MedianBlur is not pixel-level transformations. Please use with caution. warnings.warn( d:\users\moons\code\mmpose\mmpose\datasets\transforms\common_transforms.py:648: UserWarning: CoarseDropout is not pixel-level transformations. Please use with caution. warnings.warn( loading annotations into memory... Done (t=0.00s) creating index... index created! 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stem.0.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stem.0.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stem.1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stem.1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stem.2.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stem.2.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.0.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.0.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.main_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.main_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.short_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.short_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.final_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.final_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.0.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.0.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.0.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.0.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.0.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.0.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.1.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.1.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.1.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.1.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.1.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.blocks.1.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage1.1.attention.fc.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.0.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.0.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.main_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.main_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.short_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.short_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.final_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.final_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.0.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.0.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.0.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.0.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.0.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.0.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.1.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.1.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.1.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.1.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.1.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.1.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.2.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.2.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.2.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.2.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.2.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.2.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.3.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.3.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.3.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.3.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.3.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.blocks.3.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage2.1.attention.fc.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.0.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.0.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.main_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.main_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.short_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.short_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.final_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.final_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.0.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.0.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.0.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.0.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.0.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.0.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.1.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.1.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.1.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.1.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.1.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.1.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.2.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.2.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.2.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.2.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.2.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.2.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.3.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.3.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.3.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.3.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.3.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.blocks.3.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage3.1.attention.fc.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.0.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.0.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.1.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.1.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.1.conv2.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.1.conv2.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.main_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.main_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.short_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.short_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.final_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.final_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.0.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.0.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.0.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.0.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.0.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.0.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.1.conv1.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.1.conv1.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.1.conv2.depthwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.1.conv2.depthwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.1.conv2.pointwise_conv.bn.weight:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.blocks.1.conv2.pointwise_conv.bn.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- backbone.stage4.2.attention.fc.bias:weight_decay=0.0 04/01 11:21:19 - mmengine - INFO - paramwise_options -- head.final_layer.bias:weight_decay=0.0 loading annotations into memory... Done (t=0.00s) creating index... index created! loading annotations into memory... Done (t=0.00s) creating index... index created! 04/01 11:21:21 - mmengine - INFO - load backbone. in model from: https://download.openmmlab.com/mmpose/v1/projects/rtmpose/cspnext-m_udp-aic-coco_210e-256x192-f2f7d6f6_20230130.pth Loads checkpoint by http backend from path: https://download.openmmlab.com/mmpose/v1/projects/rtmpose/cspnext-m_udp-aic-coco_210e-256x192-f2f7d6f6_20230130.pth 04/01 11:21:21 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io 04/01 11:21:21 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future. 04/01 11:21:21 - mmengine - INFO - Checkpoints will be saved to D:\users\moons\code\mmpose\work_dirs\rtmpose-m_8xb256-420e_coco-256x192. 04/01 11:21:29 - mmengine - INFO - Epoch(train) [1][1/8] lr: 4.000000e-08 eta: 7:32:47 time: 8.088079 data_time: 4.277570 memory: 270 loss: 0.024505 loss_kpt: 0.024505 acc_pose: 0.000000 04/01 11:21:29 - mmengine - INFO - Epoch(train) [1][2/8] lr: 4.043964e-06 eta: 3:50:19 time: 4.115466 data_time: 2.140288 memory: 398 loss: 0.025944 loss_kpt: 0.025944 acc_pose: 0.000000 04/01 11:21:29 - mmengine - INFO - Epoch(train) [1][3/8] lr: 8.047928e-06 eta: 2:36:20 time: 2.794299 data_time: 1.430200 memory: 398 loss: 0.021399 loss_kpt: 0.021399 acc_pose: 0.000000 04/01 11:21:30 - mmengine - INFO - Epoch(train) [1][4/8] lr: 1.205189e-05 eta: 2:02:49 time: 2.195940 data_time: 1.138269 memory: 398 loss: 0.024361 loss_kpt: 0.024361 acc_pose: 0.000000 04/01 11:21:30 - mmengine - INFO - Epoch(train) [1][5/8] lr: 1.605586e-05 eta: 1:44:01 time: 1.860268 data_time: 0.989604 memory: 398 loss: 0.026822 loss_kpt: 0.026822 acc_pose: 0.000000 04/01 11:21:31 - mmengine - INFO - Epoch(train) [1][6/8] lr: 2.005982e-05 eta: 1:30:36 time: 1.620916 data_time: 0.871647 memory: 398 loss: 0.028440 loss_kpt: 0.028440 acc_pose: 0.000000 04/01 11:21:31 - mmengine - INFO - Epoch(train) [1][7/8] lr: 2.406378e-05 eta: 1:22:23 time: 1.474214 data_time: 0.808338 memory: 398 loss: 0.026134 loss_kpt: 0.026134 acc_pose: 0.000000 04/01 11:21:32 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:32 - mmengine - INFO - Epoch(train) [1][8/8] lr: 2.806775e-05 eta: 1:14:41 time: 1.337105 data_time: 0.741837 memory: 398 loss: 0.027483 loss_kpt: 0.027483 acc_pose: 0.000000 04/01 11:21:32 - mmengine - INFO - Epoch(train) [2][1/8] lr: 3.207171e-05 eta: 1:08:48 time: 1.232025 data_time: 0.691350 memory: 398 loss: 0.026463 loss_kpt: 0.026463 acc_pose: 0.000000 04/01 11:21:33 - mmengine - INFO - Epoch(train) [2][2/8] lr: 3.607568e-05 eta: 1:03:43 time: 1.141268 data_time: 0.643960 memory: 398 loss: 0.027143 loss_kpt: 0.027143 acc_pose: 0.000000 04/01 11:21:33 - mmengine - INFO - Epoch(train) [2][3/8] lr: 4.007964e-05 eta: 0:59:32 time: 1.066848 data_time: 0.605491 memory: 398 loss: 0.026889 loss_kpt: 0.026889 acc_pose: 0.000000 04/01 11:21:34 - mmengine - INFO - Epoch(train) [2][4/8] lr: 4.408360e-05 eta: 0:57:16 time: 1.026356 data_time: 0.587635 memory: 398 loss: 0.027696 loss_kpt: 0.027696 acc_pose: 0.000000 04/01 11:21:34 - mmengine - INFO - Epoch(train) [2][5/8] lr: 4.808757e-05 eta: 0:54:24 time: 0.975412 data_time: 0.561466 memory: 398 loss: 0.026968 loss_kpt: 0.026968 acc_pose: 0.000000 04/01 11:21:34 - mmengine - INFO - Epoch(train) [2][6/8] lr: 5.209153e-05 eta: 0:52:19 time: 0.938139 data_time: 0.546007 memory: 398 loss: 0.027668 loss_kpt: 0.027668 acc_pose: 0.000000 04/01 11:21:35 - mmengine - INFO - Epoch(train) [2][7/8] lr: 5.609550e-05 eta: 0:50:27 time: 0.904987 data_time: 0.530379 memory: 398 loss: 0.028256 loss_kpt: 0.028256 acc_pose: 0.000000 04/01 11:21:35 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:35 - mmengine - INFO - Epoch(train) [2][8/8] lr: 6.009946e-05 eta: 0:48:40 time: 0.873400 data_time: 0.515847 memory: 398 loss: 0.028772 loss_kpt: 0.028772 acc_pose: 0.000000 04/01 11:21:36 - mmengine - INFO - Epoch(train) [3][1/8] lr: 6.410342e-05 eta: 0:47:37 time: 0.854903 data_time: 0.507841 memory: 398 loss: 0.029236 loss_kpt: 0.029236 acc_pose: 0.000000 04/01 11:21:36 - mmengine - INFO - Epoch(train) [3][2/8] lr: 6.810739e-05 eta: 0:46:04 time: 0.827127 data_time: 0.493089 memory: 398 loss: 0.028813 loss_kpt: 0.028813 acc_pose: 0.000000 04/01 11:21:36 - mmengine - INFO - Epoch(train) [3][3/8] lr: 7.211135e-05 eta: 0:44:30 time: 0.799389 data_time: 0.477512 memory: 398 loss: 0.029249 loss_kpt: 0.029249 acc_pose: 0.000000 04/01 11:21:37 - mmengine - INFO - Epoch(train) [3][4/8] lr: 7.611532e-05 eta: 0:43:37 time: 0.783720 data_time: 0.472799 memory: 398 loss: 0.029612 loss_kpt: 0.029612 acc_pose: 0.166667 04/01 11:21:37 - mmengine - INFO - Epoch(train) [3][5/8] lr: 8.011928e-05 eta: 0:42:38 time: 0.766137 data_time: 0.464628 memory: 398 loss: 0.029579 loss_kpt: 0.029579 acc_pose: 0.000000 04/01 11:21:38 - mmengine - INFO - Epoch(train) [3][6/8] lr: 8.412324e-05 eta: 0:41:30 time: 0.746004 data_time: 0.453164 memory: 398 loss: 0.029906 loss_kpt: 0.029906 acc_pose: 0.000000 04/01 11:21:38 - mmengine - INFO - Epoch(train) [3][7/8] lr: 8.812721e-05 eta: 0:41:01 time: 0.737653 data_time: 0.450395 memory: 398 loss: 0.029549 loss_kpt: 0.029549 acc_pose: 0.000000 04/01 11:21:39 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:39 - mmengine - INFO - Epoch(train) [3][8/8] lr: 9.213117e-05 eta: 0:40:04 time: 0.720851 data_time: 0.441606 memory: 398 loss: 0.028916 loss_kpt: 0.028916 acc_pose: 0.000000 04/01 11:21:39 - mmengine - INFO - Epoch(train) [4][1/8] lr: 9.613514e-05 eta: 0:39:29 time: 0.710345 data_time: 0.438231 memory: 398 loss: 0.029163 loss_kpt: 0.029163 acc_pose: 0.000000 04/01 11:21:39 - mmengine - INFO - Epoch(train) [4][2/8] lr: 1.001391e-04 eta: 0:38:40 time: 0.695891 data_time: 0.430200 memory: 398 loss: 0.028752 loss_kpt: 0.028752 acc_pose: 0.000000 04/01 11:21:40 - mmengine - INFO - Epoch(train) [4][3/8] lr: 1.041431e-04 eta: 0:37:59 time: 0.684035 data_time: 0.424055 memory: 398 loss: 0.028313 loss_kpt: 0.028313 acc_pose: 0.000000 04/01 11:21:40 - mmengine - INFO - Epoch(train) [4][4/8] lr: 1.081470e-04 eta: 0:37:28 time: 0.674786 data_time: 0.417787 memory: 398 loss: 0.028611 loss_kpt: 0.028611 acc_pose: 0.000000 04/01 11:21:41 - mmengine - INFO - Epoch(train) [4][5/8] lr: 1.121510e-04 eta: 0:36:59 time: 0.666224 data_time: 0.414641 memory: 398 loss: 0.028885 loss_kpt: 0.028885 acc_pose: 0.000000 04/01 11:21:41 - mmengine - INFO - Epoch(train) [4][6/8] lr: 1.161550e-04 eta: 0:36:39 time: 0.660500 data_time: 0.413408 memory: 398 loss: 0.029140 loss_kpt: 0.029140 acc_pose: 0.166667 04/01 11:21:41 - mmengine - INFO - Epoch(train) [4][7/8] lr: 1.201589e-04 eta: 0:36:03 time: 0.649835 data_time: 0.407256 memory: 398 loss: 0.028725 loss_kpt: 0.028725 acc_pose: 0.000000 04/01 11:21:42 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:42 - mmengine - INFO - Epoch(train) [4][8/8] lr: 1.241629e-04 eta: 0:35:38 time: 0.642690 data_time: 0.404222 memory: 398 loss: 0.028581 loss_kpt: 0.028581 acc_pose: 0.000000 04/01 11:21:42 - mmengine - INFO - Epoch(train) [5][1/8] lr: 1.281668e-04 eta: 0:35:26 time: 0.639129 data_time: 0.404589 memory: 398 loss: 0.028826 loss_kpt: 0.028826 acc_pose: 0.000000 04/01 11:21:43 - mmengine - INFO - Epoch(train) [5][2/8] lr: 1.321708e-04 eta: 0:35:03 time: 0.632387 data_time: 0.401501 memory: 398 loss: 0.029049 loss_kpt: 0.029049 acc_pose: 0.000000 04/01 11:21:43 - mmengine - INFO - Epoch(train) [5][3/8] lr: 1.361748e-04 eta: 0:34:34 time: 0.623928 data_time: 0.396608 memory: 398 loss: 0.028842 loss_kpt: 0.028842 acc_pose: 0.000000 04/01 11:21:44 - mmengine - INFO - Epoch(train) [5][4/8] lr: 1.401787e-04 eta: 0:34:19 time: 0.619514 data_time: 0.395321 memory: 398 loss: 0.028994 loss_kpt: 0.028994 acc_pose: 0.000000 04/01 11:21:44 - mmengine - INFO - Epoch(train) [5][5/8] lr: 1.441827e-04 eta: 0:33:57 time: 0.613070 data_time: 0.391490 memory: 398 loss: 0.028872 loss_kpt: 0.028872 acc_pose: 0.000000 04/01 11:21:44 - mmengine - INFO - Epoch(train) [5][6/8] lr: 1.481867e-04 eta: 0:33:31 time: 0.605512 data_time: 0.386910 memory: 398 loss: 0.028679 loss_kpt: 0.028679 acc_pose: 0.000000 04/01 11:21:45 - mmengine - INFO - Epoch(train) [5][7/8] lr: 1.521906e-04 eta: 0:33:15 time: 0.600858 data_time: 0.384955 memory: 398 loss: 0.028884 loss_kpt: 0.028884 acc_pose: 0.000000 04/01 11:21:45 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:45 - mmengine - INFO - Epoch(train) [5][8/8] lr: 1.561946e-04 eta: 0:32:55 time: 0.595050 data_time: 0.381607 memory: 398 loss: 0.029061 loss_kpt: 0.029061 acc_pose: 0.000000 04/01 11:21:46 - mmengine - INFO - Epoch(train) [6][1/8] lr: 1.601986e-04 eta: 0:32:48 time: 0.592987 data_time: 0.380331 memory: 398 loss: 0.029088 loss_kpt: 0.029088 acc_pose: 0.000000 04/01 11:21:46 - mmengine - INFO - Epoch(train) [6][2/8] lr: 1.642025e-04 eta: 0:32:22 time: 0.585379 data_time: 0.375157 memory: 398 loss: 0.028816 loss_kpt: 0.028816 acc_pose: 0.000000 04/01 11:21:46 - mmengine - INFO - Epoch(train) [6][3/8] lr: 1.682065e-04 eta: 0:32:05 time: 0.580377 data_time: 0.372277 memory: 398 loss: 0.028998 loss_kpt: 0.028998 acc_pose: 0.000000 04/01 11:21:47 - mmengine - INFO - Epoch(train) [6][4/8] lr: 1.722105e-04 eta: 0:31:56 time: 0.577833 data_time: 0.371999 memory: 398 loss: 0.029180 loss_kpt: 0.029180 acc_pose: 0.000000 04/01 11:21:47 - mmengine - INFO - Epoch(train) [6][5/8] lr: 1.762144e-04 eta: 0:31:52 time: 0.576891 data_time: 0.373013 memory: 398 loss: 0.029228 loss_kpt: 0.029228 acc_pose: 0.000000 04/01 11:21:48 - mmengine - INFO - Epoch(train) [6][6/8] lr: 1.802184e-04 eta: 0:31:41 time: 0.573878 data_time: 0.371927 memory: 398 loss: 0.029386 loss_kpt: 0.029386 acc_pose: 0.166667 04/01 11:21:48 - mmengine - INFO - Epoch(train) [6][7/8] lr: 1.842223e-04 eta: 0:31:29 time: 0.570354 data_time: 0.369545 memory: 398 loss: 0.029284 loss_kpt: 0.029284 acc_pose: 0.000000 04/01 11:21:49 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:49 - mmengine - INFO - Epoch(train) [6][8/8] lr: 1.882263e-04 eta: 0:31:23 time: 0.568750 data_time: 0.368452 memory: 398 loss: 0.029167 loss_kpt: 0.029167 acc_pose: 0.000000 04/01 11:21:49 - mmengine - INFO - Epoch(train) [7][1/8] lr: 1.922303e-04 eta: 0:31:15 time: 0.566492 data_time: 0.368127 memory: 398 loss: 0.028925 loss_kpt: 0.028925 acc_pose: 0.000000 04/01 11:21:49 - mmengine - INFO - Epoch(train) [7][2/8] lr: 1.962342e-04 eta: 0:30:59 time: 0.561814 data_time: 0.365066 memory: 398 loss: 0.028866 loss_kpt: 0.028866 acc_pose: 0.000000 04/01 11:21:50 - mmengine - INFO - Epoch(train) [7][3/8] lr: 2.002382e-04 eta: 0:30:57 time: 0.410769 data_time: 0.287585 memory: 398 loss: 0.028865 loss_kpt: 0.028865 acc_pose: 0.000000 04/01 11:21:50 - mmengine - INFO - Epoch(train) [7][4/8] lr: 2.042422e-04 eta: 0:30:44 time: 0.415288 data_time: 0.292818 memory: 398 loss: 0.028894 loss_kpt: 0.028894 acc_pose: 0.000000 04/01 11:21:51 - mmengine - INFO - Epoch(train) [7][5/8] lr: 2.082461e-04 eta: 0:30:39 time: 0.421907 data_time: 0.298709 memory: 398 loss: 0.029380 loss_kpt: 0.029380 acc_pose: 0.000000 04/01 11:21:51 - mmengine - INFO - Epoch(train) [7][6/8] lr: 2.122501e-04 eta: 0:30:28 time: 0.421749 data_time: 0.298743 memory: 398 loss: 0.029185 loss_kpt: 0.029185 acc_pose: 0.000000 04/01 11:21:52 - mmengine - INFO - Epoch(train) [7][7/8] lr: 2.162541e-04 eta: 0:30:15 time: 0.418390 data_time: 0.295502 memory: 398 loss: 0.028789 loss_kpt: 0.028789 acc_pose: 0.000000 04/01 11:21:52 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:52 - mmengine - INFO - Epoch(train) [7][8/8] lr: 2.202580e-04 eta: 0:30:11 time: 0.419457 data_time: 0.297270 memory: 398 loss: 0.028552 loss_kpt: 0.028552 acc_pose: 0.000000 04/01 11:21:53 - mmengine - INFO - Epoch(train) [8][1/8] lr: 2.242620e-04 eta: 0:30:07 time: 0.417338 data_time: 0.296340 memory: 398 loss: 0.028775 loss_kpt: 0.028775 acc_pose: 0.000000 04/01 11:21:53 - mmengine - INFO - Epoch(train) [8][2/8] lr: 2.282659e-04 eta: 0:30:02 time: 0.419137 data_time: 0.296592 memory: 398 loss: 0.028671 loss_kpt: 0.028671 acc_pose: 0.000000 04/01 11:21:53 - mmengine - INFO - Epoch(train) [8][3/8] lr: 2.322699e-04 eta: 0:29:54 time: 0.419788 data_time: 0.297194 memory: 398 loss: 0.028718 loss_kpt: 0.028718 acc_pose: 0.000000 04/01 11:21:54 - mmengine - INFO - Epoch(train) [8][4/8] lr: 2.362739e-04 eta: 0:29:43 time: 0.420395 data_time: 0.297513 memory: 398 loss: 0.028173 loss_kpt: 0.028173 acc_pose: 0.000000 04/01 11:21:54 - mmengine - INFO - Epoch(train) [8][5/8] lr: 2.402778e-04 eta: 0:29:32 time: 0.420713 data_time: 0.297257 memory: 398 loss: 0.028403 loss_kpt: 0.028403 acc_pose: 0.000000 04/01 11:21:55 - mmengine - INFO - Epoch(train) [8][6/8] lr: 2.442818e-04 eta: 0:29:30 time: 0.419490 data_time: 0.297064 memory: 398 loss: 0.028414 loss_kpt: 0.028414 acc_pose: 0.000000 04/01 11:21:55 - mmengine - INFO - Epoch(train) [8][7/8] lr: 2.482858e-04 eta: 0:29:28 time: 0.422422 data_time: 0.299549 memory: 398 loss: 0.028509 loss_kpt: 0.028509 acc_pose: 0.000000 04/01 11:21:56 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:56 - mmengine - INFO - Epoch(train) [8][8/8] lr: 2.522897e-04 eta: 0:29:29 time: 0.424639 data_time: 0.300102 memory: 398 loss: 0.028503 loss_kpt: 0.028503 acc_pose: 0.000000 04/01 11:21:56 - mmengine - INFO - Epoch(train) [9][1/8] lr: 2.562937e-04 eta: 0:29:24 time: 0.424677 data_time: 0.300180 memory: 398 loss: 0.028487 loss_kpt: 0.028487 acc_pose: 0.000000 04/01 11:21:57 - mmengine - INFO - Epoch(train) [9][2/8] lr: 2.602977e-04 eta: 0:29:21 time: 0.426413 data_time: 0.301676 memory: 398 loss: 0.028433 loss_kpt: 0.028433 acc_pose: 0.000000 04/01 11:21:57 - mmengine - INFO - Epoch(train) [9][3/8] lr: 2.643016e-04 eta: 0:29:13 time: 0.422853 data_time: 0.299660 memory: 398 loss: 0.027892 loss_kpt: 0.027892 acc_pose: 0.000000 04/01 11:21:57 - mmengine - INFO - Epoch(train) [9][4/8] lr: 2.683056e-04 eta: 0:29:08 time: 0.424459 data_time: 0.301336 memory: 398 loss: 0.028084 loss_kpt: 0.028084 acc_pose: 0.000000 04/01 11:21:58 - mmengine - INFO - Epoch(train) [9][5/8] lr: 2.723095e-04 eta: 0:29:04 time: 0.427833 data_time: 0.304381 memory: 398 loss: 0.028072 loss_kpt: 0.028072 acc_pose: 0.000000 04/01 11:21:58 - mmengine - INFO - Epoch(train) [9][6/8] lr: 2.763135e-04 eta: 0:28:56 time: 0.425547 data_time: 0.301326 memory: 398 loss: 0.027946 loss_kpt: 0.027946 acc_pose: 0.000000 04/01 11:21:59 - mmengine - INFO - Epoch(train) [9][7/8] lr: 2.803175e-04 eta: 0:28:50 time: 0.425308 data_time: 0.301233 memory: 398 loss: 0.028099 loss_kpt: 0.028099 acc_pose: 0.000000 04/01 11:21:59 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:21:59 - mmengine - INFO - Epoch(train) [9][8/8] lr: 2.843214e-04 eta: 0:28:41 time: 0.425595 data_time: 0.301666 memory: 398 loss: 0.028076 loss_kpt: 0.028076 acc_pose: 0.000000 04/01 11:22:00 - mmengine - INFO - Epoch(train) [10][1/8] lr: 2.883254e-04 eta: 0:28:37 time: 0.423404 data_time: 0.300434 memory: 398 loss: 0.028256 loss_kpt: 0.028256 acc_pose: 0.000000 04/01 11:22:00 - mmengine - INFO - Epoch(train) [10][2/8] lr: 2.923294e-04 eta: 0:28:32 time: 0.425518 data_time: 0.301761 memory: 398 loss: 0.028681 loss_kpt: 0.028681 acc_pose: 0.000000 04/01 11:22:00 - mmengine - INFO - Epoch(train) [10][3/8] lr: 2.963333e-04 eta: 0:28:31 time: 0.426297 data_time: 0.300867 memory: 398 loss: 0.028329 loss_kpt: 0.028329 acc_pose: 0.333333 04/01 11:22:01 - mmengine - INFO - Epoch(train) [10][4/8] lr: 3.003373e-04 eta: 0:28:24 time: 0.427169 data_time: 0.301572 memory: 398 loss: 0.028693 loss_kpt: 0.028693 acc_pose: 0.000000 04/01 11:22:01 - mmengine - INFO - Epoch(train) [10][5/8] lr: 3.043413e-04 eta: 0:28:15 time: 0.426023 data_time: 0.300416 memory: 398 loss: 0.029088 loss_kpt: 0.029088 acc_pose: 0.000000 04/01 11:22:02 - mmengine - INFO - Epoch(train) [10][6/8] lr: 3.083452e-04 eta: 0:28:12 time: 0.426831 data_time: 0.302222 memory: 398 loss: 0.028838 loss_kpt: 0.028838 acc_pose: 0.000000 04/01 11:22:02 - mmengine - INFO - Epoch(train) [10][7/8] lr: 3.123492e-04 eta: 0:28:07 time: 0.426414 data_time: 0.301687 memory: 398 loss: 0.028840 loss_kpt: 0.028840 acc_pose: 0.000000 04/01 11:22:02 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:22:02 - mmengine - INFO - Epoch(train) [10][8/8] lr: 3.163532e-04 eta: 0:27:59 time: 0.422809 data_time: 0.298465 memory: 398 loss: 0.028468 loss_kpt: 0.028468 acc_pose: 0.000000 04/01 11:22:02 - mmengine - INFO - Saving checkpoint at 10 epochs 04/01 11:22:08 - mmengine - INFO - Epoch(val) [10][1/1] eta: 0:00:00 time: 3.785827 data_time: 3.624997 memory: 280 04/01 11:22:08 - mmengine - INFO - Evaluating CocoMetric... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *keypoints* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.00s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.000 04/01 11:22:08 - mmengine - INFO - Epoch(val) [10][1/1] coco/AP: 0.000000 coco/AP .5: 0.000000 coco/AP .75: 0.000000 coco/AP (M): -1.000000 coco/AP (L): 0.000000 coco/AR: 0.000000 coco/AR .5: 0.000000 coco/AR .75: 0.000000 coco/AR (M): -1.000000 coco/AR (L): 0.000000data_time: 3.624997 time: 3.785827 04/01 11:22:10 - mmengine - INFO - The best checkpoint with 0.0000 coco/AP at 10 epoch is saved to best_coco/AP_epoch_10.pth. 04/01 11:22:11 - mmengine - INFO - Epoch(train) [11][1/8] lr: 3.203571e-04 eta: 0:27:58 time: 0.426340 data_time: 0.299827 memory: 398 loss: 0.028834 loss_kpt: 0.028834 acc_pose: 0.000000 04/01 11:22:11 - mmengine - INFO - Epoch(train) [11][2/8] lr: 3.243611e-04 eta: 0:27:49 time: 0.423939 data_time: 0.297466 memory: 398 loss: 0.029084 loss_kpt: 0.029084 acc_pose: 0.166667 04/01 11:22:11 - mmengine - INFO - Epoch(train) [11][3/8] lr: 3.283650e-04 eta: 0:27:42 time: 0.420114 data_time: 0.293626 memory: 398 loss: 0.028687 loss_kpt: 0.028687 acc_pose: 0.000000 04/01 11:22:12 - mmengine - INFO - Epoch(train) [11][4/8] lr: 3.323690e-04 eta: 0:27:38 time: 0.420303 data_time: 0.293816 memory: 398 loss: 0.028548 loss_kpt: 0.028548 acc_pose: 0.166667 04/01 11:22:12 - mmengine - INFO - Epoch(train) [11][5/8] lr: 3.363730e-04 eta: 0:27:37 time: 0.423662 data_time: 0.297162 memory: 398 loss: 0.028793 loss_kpt: 0.028793 acc_pose: 0.000000 04/01 11:22:13 - mmengine - INFO - Epoch(train) [11][6/8] lr: 3.403769e-04 eta: 0:27:29 time: 0.420693 data_time: 0.294438 memory: 398 loss: 0.028880 loss_kpt: 0.028880 acc_pose: 0.000000 04/01 11:22:13 - mmengine - INFO - Epoch(train) [11][7/8] lr: 3.443809e-04 eta: 0:27:26 time: 0.421895 data_time: 0.295447 memory: 398 loss: 0.029084 loss_kpt: 0.029084 acc_pose: 0.000000 04/01 11:22:14 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:22:14 - mmengine - INFO - Epoch(train) [11][8/8] lr: 3.483849e-04 eta: 0:27:24 time: 0.424600 data_time: 0.298210 memory: 398 loss: 0.029381 loss_kpt: 0.029381 acc_pose: 0.000000 04/01 11:22:14 - mmengine - INFO - Epoch(train) [12][1/8] lr: 3.523888e-04 eta: 0:27:21 time: 0.424687 data_time: 0.298253 memory: 398 loss: 0.029398 loss_kpt: 0.029398 acc_pose: 0.000000 04/01 11:22:14 - mmengine - INFO - Epoch(train) [12][2/8] lr: 3.563928e-04 eta: 0:27:20 time: 0.427210 data_time: 0.300939 memory: 398 loss: 0.029404 loss_kpt: 0.029404 acc_pose: 0.000000 04/01 11:22:15 - mmengine - INFO - Epoch(train) [12][3/8] lr: 3.603968e-04 eta: 0:27:15 time: 0.424302 data_time: 0.299513 memory: 398 loss: 0.029534 loss_kpt: 0.029534 acc_pose: 0.000000 04/01 11:22:15 - mmengine - INFO - Epoch(train) [12][4/8] lr: 3.644007e-04 eta: 0:27:16 time: 0.429669 data_time: 0.303356 memory: 398 loss: 0.029860 loss_kpt: 0.029860 acc_pose: 0.166667 04/01 11:22:16 - mmengine - INFO - Epoch(train) [12][5/8] lr: 3.684047e-04 eta: 0:27:09 time: 0.428431 data_time: 0.302176 memory: 398 loss: 0.029855 loss_kpt: 0.029855 acc_pose: 0.000000 04/01 11:22:16 - mmengine - INFO - Epoch(train) [12][6/8] lr: 3.724086e-04 eta: 0:27:08 time: 0.429137 data_time: 0.302741 memory: 398 loss: 0.029829 loss_kpt: 0.029829 acc_pose: 0.000000 04/01 11:22:17 - mmengine - INFO - Epoch(train) [12][7/8] lr: 3.764126e-04 eta: 0:27:05 time: 0.426477 data_time: 0.300385 memory: 398 loss: 0.029958 loss_kpt: 0.029958 acc_pose: 0.000000 04/01 11:22:17 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:22:17 - mmengine - INFO - Epoch(train) [12][8/8] lr: 3.804166e-04 eta: 0:27:01 time: 0.425758 data_time: 0.300041 memory: 398 loss: 0.029834 loss_kpt: 0.029834 acc_pose: 0.000000 04/01 11:22:18 - mmengine - INFO - Epoch(train) [13][1/8] lr: 3.844205e-04 eta: 0:27:02 time: 0.428491 data_time: 0.302089 memory: 398 loss: 0.029718 loss_kpt: 0.029718 acc_pose: 0.000000 04/01 11:22:18 - mmengine - INFO - Epoch(train) [13][2/8] lr: 3.884245e-04 eta: 0:26:57 time: 0.425814 data_time: 0.300633 memory: 398 loss: 0.029965 loss_kpt: 0.029965 acc_pose: 0.000000 04/01 11:22:18 - mmengine - INFO - Epoch(train) [13][3/8] lr: 3.924285e-04 eta: 0:26:54 time: 0.424995 data_time: 0.299733 memory: 398 loss: 0.029975 loss_kpt: 0.029975 acc_pose: 0.000000 04/01 11:22:19 - mmengine - INFO - Epoch(train) [13][4/8] lr: 3.964324e-04 eta: 0:26:47 time: 0.424450 data_time: 0.299363 memory: 398 loss: 0.030188 loss_kpt: 0.030188 acc_pose: 0.000000 04/01 11:22:19 - mmengine - INFO - Epoch(train) [13][5/8] lr: 4.004364e-04 eta: 0:26:43 time: 0.421449 data_time: 0.296817 memory: 398 loss: 0.030414 loss_kpt: 0.030414 acc_pose: 0.000000 04/01 11:22:19 - mmengine - INFO - Epoch(train) [13][6/8] lr: 4.044404e-04 eta: 0:26:38 time: 0.420891 data_time: 0.295996 memory: 398 loss: 0.030554 loss_kpt: 0.030554 acc_pose: 0.000000 04/01 11:22:20 - mmengine - INFO - Epoch(train) [13][7/8] lr: 4.084443e-04 eta: 0:26:32 time: 0.417639 data_time: 0.293989 memory: 398 loss: 0.030436 loss_kpt: 0.030436 acc_pose: 0.000000 04/01 11:22:20 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:22:20 - mmengine - INFO - Epoch(train) [13][8/8] lr: 4.124483e-04 eta: 0:26:31 time: 0.418959 data_time: 0.295623 memory: 398 loss: 0.030656 loss_kpt: 0.030656 acc_pose: 0.333333 04/01 11:22:21 - mmengine - INFO - Epoch(train) [14][1/8] lr: 4.164523e-04 eta: 0:26:28 time: 0.420520 data_time: 0.296239 memory: 398 loss: 0.031010 loss_kpt: 0.031010 acc_pose: 0.000000 04/01 11:22:21 - mmengine - INFO - Epoch(train) [14][2/8] lr: 4.204562e-04 eta: 0:26:23 time: 0.417791 data_time: 0.293517 memory: 398 loss: 0.030873 loss_kpt: 0.030873 acc_pose: 0.000000 04/01 11:22:21 - mmengine - INFO - Epoch(train) [14][3/8] lr: 4.244602e-04 eta: 0:26:18 time: 0.414965 data_time: 0.290382 memory: 398 loss: 0.031144 loss_kpt: 0.031144 acc_pose: 0.000000 04/01 11:22:22 - mmengine - INFO - Epoch(train) [14][4/8] lr: 4.284641e-04 eta: 0:26:14 time: 0.412842 data_time: 0.289691 memory: 398 loss: 0.031221 loss_kpt: 0.031221 acc_pose: 0.000000 04/01 11:22:22 - mmengine - INFO - Epoch(train) [14][5/8] lr: 4.324681e-04 eta: 0:26:09 time: 0.411050 data_time: 0.287815 memory: 398 loss: 0.031307 loss_kpt: 0.031307 acc_pose: 0.000000 04/01 11:22:22 - mmengine - INFO - Epoch(train) [14][6/8] lr: 4.364721e-04 eta: 0:26:07 time: 0.412121 data_time: 0.289243 memory: 398 loss: 0.031904 loss_kpt: 0.031904 acc_pose: 0.000000 04/01 11:22:23 - mmengine - INFO - Epoch(train) [14][7/8] lr: 4.404760e-04 eta: 0:26:04 time: 0.413764 data_time: 0.291423 memory: 398 loss: 0.031844 loss_kpt: 0.031844 acc_pose: 0.000000 04/01 11:22:23 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:22:23 - mmengine - INFO - Epoch(train) [14][8/8] lr: 4.444800e-04 eta: 0:26:00 time: 0.410160 data_time: 0.288341 memory: 398 loss: 0.031877 loss_kpt: 0.031877 acc_pose: 0.000000 04/01 11:22:24 - mmengine - INFO - Epoch(train) [15][1/8] lr: 4.484840e-04 eta: 0:26:02 time: 0.411477 data_time: 0.289414 memory: 398 loss: 0.031844 loss_kpt: 0.031844 acc_pose: 0.000000 04/01 11:22:24 - mmengine - INFO - Epoch(train) [15][2/8] lr: 4.524879e-04 eta: 0:26:01 time: 0.409793 data_time: 0.289113 memory: 398 loss: 0.031866 loss_kpt: 0.031866 acc_pose: 0.000000 04/01 11:22:24 - mmengine - INFO - Epoch(train) [15][3/8] lr: 4.564919e-04 eta: 0:25:56 time: 0.406888 data_time: 0.286667 memory: 398 loss: 0.031880 loss_kpt: 0.031880 acc_pose: 0.000000 04/01 11:22:25 - mmengine - INFO - Epoch(train) [15][4/8] lr: 4.604959e-04 eta: 0:25:54 time: 0.405699 data_time: 0.285383 memory: 398 loss: 0.031938 loss_kpt: 0.031938 acc_pose: 0.000000 04/01 11:22:25 - mmengine - INFO - Epoch(train) [15][5/8] lr: 4.644998e-04 eta: 0:25:52 time: 0.406668 data_time: 0.286106 memory: 398 loss: 0.032468 loss_kpt: 0.032468 acc_pose: 0.333333 04/01 11:22:26 - mmengine - INFO - Epoch(train) [15][6/8] lr: 4.685038e-04 eta: 0:25:50 time: 0.406681 data_time: 0.285953 memory: 398 loss: 0.032201 loss_kpt: 0.032201 acc_pose: 0.000000 04/01 11:22:26 - mmengine - INFO - Epoch(train) [15][7/8] lr: 4.725077e-04 eta: 0:25:46 time: 0.403823 data_time: 0.283235 memory: 398 loss: 0.031966 loss_kpt: 0.031966 acc_pose: 0.000000 04/01 11:22:26 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:22:26 - mmengine - INFO - Epoch(train) [15][8/8] lr: 4.765117e-04 eta: 0:25:41 time: 0.403121 data_time: 0.283317 memory: 398 loss: 0.032069 loss_kpt: 0.032069 acc_pose: 0.000000 04/01 11:22:27 - mmengine - INFO - Epoch(train) [16][1/8] lr: 4.805157e-04 eta: 0:25:42 time: 0.405375 data_time: 0.285554 memory: 398 loss: 0.031816 loss_kpt: 0.031816 acc_pose: 0.000000 04/01 11:22:27 - mmengine - INFO - Epoch(train) [16][2/8] lr: 4.845196e-04 eta: 0:25:42 time: 0.408280 data_time: 0.286778 memory: 398 loss: 0.031470 loss_kpt: 0.031470 acc_pose: 0.000000 04/01 11:22:28 - mmengine - INFO - Epoch(train) [16][3/8] lr: 4.885236e-04 eta: 0:25:39 time: 0.407393 data_time: 0.285771 memory: 398 loss: 0.031554 loss_kpt: 0.031554 acc_pose: 0.166667 04/01 11:22:28 - mmengine - INFO - Epoch(train) [16][4/8] lr: 4.925276e-04 eta: 0:25:36 time: 0.405765 data_time: 0.284488 memory: 398 loss: 0.031237 loss_kpt: 0.031237 acc_pose: 0.000000 04/01 11:22:29 - mmengine - INFO - Epoch(train) [16][5/8] lr: 4.965315e-04 eta: 0:25:34 time: 0.404014 data_time: 0.284042 memory: 398 loss: 0.031253 loss_kpt: 0.031253 acc_pose: 0.000000 04/01 11:22:29 - mmengine - INFO - Epoch(train) [16][6/8] lr: 5.005355e-04 eta: 0:25:31 time: 0.404306 data_time: 0.284421 memory: 398 loss: 0.030909 loss_kpt: 0.030909 acc_pose: 0.000000 04/01 11:22:29 - mmengine - INFO - Epoch(train) [16][7/8] lr: 5.045395e-04 eta: 0:25:29 time: 0.405969 data_time: 0.286127 memory: 398 loss: 0.030898 loss_kpt: 0.030898 acc_pose: 0.000000 04/01 11:22:30 - mmengine - INFO - Exp name: rtmpose-m_8xb256-420e_coco-256x192_20230401_112112 04/01 11:22:30 - mmengine - INFO - Epoch(train) [16][8/8] lr: 5.085434e-04 eta: 0:25:26 time: 0.404716 data_time: 0.285364 memory: 398 loss: 0.030783 loss_kpt: 0.030783 acc_pose: 0.000000 04/01 11:22:30 - mmengine - INFO - Epoch(train) [17][1/8] lr: 5.125474e-04 eta: 0:25:29 time: 0.408489 data_time: 0.287623 memory: 398 loss: 0.030766 loss_kpt: 0.030766 acc_pose: 0.000000 04/01 11:22:31 - mmengine - INFO - Epoch(train) [17][2/8] lr: 5.165514e-04 eta: 0:25:25 time: 0.409007 data_time: 0.288007 memory: 398 loss: 0.030995 loss_kpt: 0.030995 acc_pose: 0.000000 04/01 11:22:31 - mmengine - INFO - Epoch(train) [17][3/8] lr: 5.205553e-04 eta: 0:25:21 time: 0.405462 data_time: 0.286734 memory: 398 loss: 0.030944 loss_kpt: 0.030944 acc_pose: 0.000000 04/01 11:22:31 - mmengine - INFO - Epoch(train) [17][4/8] lr: 5.245593e-04 eta: 0:25:19 time: 0.407223 data_time: 0.288462 memory: 398 loss: 0.030560 loss_kpt: 0.030560 acc_pose: 0.000000 04/01 11:22:32 - mmengine - INFO - Epoch(train) [17][5/8] lr: 5.285632e-04 eta: 0:25:17 time: 0.409267 data_time: 0.290376 memory: 398 loss: 0.030953 loss_kpt: 0.030792 acc_pose: 0.000000 04/01 11:22:34 - mmengine - INFO - Epoch(train) [18][3/8] lr: 5.525870e-04 eta: 0:25:04 time: 0.405283 data_time: 0.285804 memory: 398 loss: 0.030736 loss_kpt: 0.030736 acc_pose: 0.000000 04/01 11:22:35 - mmengine - INFO - Epoch(train) [18][4/8] lr: 5.565910e-04 eta: 0:25:03 time: 0.404247 data_time: 0.283191 memory: 398 loss: 0.030743 loss_kpt: 0.030743 acc_pose: 0.000000 Traceback (most recent call last): File "D:\users\moons\code\mmpose\tools\train.py", line 160, in <module> main() File "D:\users\moons\code\mmpose\tools\train.py", line 156, in main runner.train() File "C:\Users\moons\.conda\envs\rtmpose\lib\site-packages\mmengine\runner\runner.py", line 1701, in train model = self.train_loop.run() # type: ignore File "C:\Users\moons\.conda\envs\rtmpose\lib\site-packages\mmengine\runner\loops.py", line 96, in run self.run_epoch() File "C:\Users\moons\.conda\envs\rtmpose\lib\site-packages\mmengine\runner\loops.py", line 112, in run_epoch self.run_iter(idx, data_batch) File "C:\Users\moons\.conda\envs\rtmpose\lib\site-packages\mmengine\runner\loops.py", line 128, in run_iter outputs = self.runner.model.train_step( File "C:\Users\moons\.conda\envs\rtmpose\lib\site-packages\mmengine\model\base_model\base_model.py", line 115, in train_step parsed_losses, log_vars = self.parse_losses(losses) # type: ignore File "C:\Users\moons\.conda\envs\rtmpose\lib\site-packages\mmengine\model\base_model\base_model.py", line 165, in parse_losses log_vars.append([loss_name, loss_value.mean()]) RuntimeError: mean(): input dtype should be either floating point or complex dtypes. Got Long instead.
(rtmpose) PS D:\users\moons\code\mmpose> python .\mmpose\utils\collect_env.py - C++ Version: 199711 - MSVC 192829337 - Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740) - OpenMP 2019 - LAPACK is enabled (usually provided by MKL) - CPU capability usage: AVX512 - CUDA Runtime 11.3 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.2 - Magma 2.5.4 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/w/b/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/w/b/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, TorchVision: 0.11.2+cu113OpenCV: 4.7.0MMEngine: 0.7.0 MMPose: 1.0.0rc1+896e9d5
https://github.com/vansinhu/mmpose/tree/triangle/projects/triangle
reproduct
Solved with more training data.
Environment