Open seon-creator opened 1 year ago
Thanks for using MMPose. Associative Embedding is still under migration. Maybe you can use other methods such as DEKR
Thank you I'm trying to use DEKR
I tried some times to train that model, but error occur How to solve it ?
Traceback (most recent call last):
File "tools/train.py", line 161, in <module>
main()
File "tools/train.py", line 157, in main
runner.train()
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1745, in train
model = self.train_loop.run() # type: ignore
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/mmengine/runner/loops.py", line 96, in run
self.run_epoch()
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/mmengine/runner/loops.py", line 111, in run_epoch
for idx, data_batch in enumerate(self.dataloader):
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 633, in __next__
data = self._next_data()
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1345, in _next_data
return self._process_data(data)
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1371, in _process_data
data.reraise()
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/torch/_utils.py", line 644, in reraise
raise exception
IndexError: Caught IndexError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop
data = fetcher.fetch(index)
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 51, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 51, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/mmengine/dataset/base_dataset.py", line 408, in __getitem__
data = self.prepare_data(idx)
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/mmengine/dataset/base_dataset.py", line 113, in wrapper
return old_func(obj, *args, **kwargs)
File "/data/home/seondeok/mmpose/mmpose/datasets/datasets/base/base_coco_style_dataset.py", line 150, in prepare_data
return self.pipeline(data_info)
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/mmengine/dataset/base_dataset.py", line 58, in __call__
data = t(data)
File "/data/home/seondeok/.conda/envs/btmmpose/lib/python3.8/site-packages/mmcv/transforms/base.py", line 12, in __call__
return self.transform(results)
File "/data/home/seondeok/mmpose/mmpose/datasets/transforms/bottomup_transforms.py", line 89, in transform
mask = 1 - self._segs_to_mask(invalid_segs, img_shape)
File "/data/home/seondeok/mmpose/mmpose/datasets/transforms/bottomup_transforms.py", line 53, in _segs_to_mask
rle = cocomask.frPyObjects(seg, img_shape[0], img_shape[1])
File "xtcocotools/_mask.pyx", line 292, in xtcocotools._mask.frPyObjects
IndexError: list index out of range
It is occur while training.
08/30 18:14:43 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
08/30 18:14:43 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
08/30 18:14:43 - mmengine - INFO - Checkpoints will be saved to /data/home/seondeok/mmpose/work_dirs/Bottom_up/DEKR_hrnet_w32.
08/30 18:15:07 - mmengine - INFO - Epoch(train) [1][ 50/106] lr: 9.909820e-05 eta: 2:48:52 time: 0.479100 data_time: 0.027063 memory: 7743 loss: 0.001327 loss/heatmap: 0.000875 loss/displacement: 0.000452
Apologies for the delayed response. Has the problem been resolved?
Thank you for check it.
Now I can train DEKR model but, when evaluation it has problem. All of the AP value are zero.
Loading and preparing results... DONE (t=0.01s) creating index... index created! Running per image evaluation... Evaluate annotation type keypoints DONE (t=0.02s). Accumulating evaluation results... DONE (t=0.00s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.000
Prerequisite
Environment
I want to compare the accuracy of keypoint inference between bottom up and top down. I find the model in bottom up root is : mmpose/configs/body/2d_kpt_sview_rgb_img/associative_embedding
I'm using latest version of mmpose
Reproduces the problem - code sample
Reproduces the problem - command or script
In mmpose directory.
Reproduces the problem - error message
Additional information