Open wang1528186571 opened 8 months ago
please help me!
Thank you for bringing this issue to our attention! There seems to be a bug in the MSPNHead
, and we will address it promptly. In the meantime, you could try using another model.
Thank you for bringing this issue to our attention! There seems to be a bug in the
MSPNHead
, and we will address it promptly. In the meantime, you could try using another model.
thank you! if you address please tell me ! thank you!
If you wish to use RSN, you can modify the code manually by following https://github.com/open-mmlab/mmpose/pull/2993.
Prerequisite
Environment
mmcv 2.1.0 mmdet 3.3.0 mmengine 0.10.3 mmpose 1.3.1 /home/meng/Desktop/wjl-project/mmpose
Reproduces the problem - code sample
base = ['mmpose::base/default_runtime.py']
runtime
train_cfg = dict(max_epochs=210, val_interval=10)
optimizer
optim_wrapper = dict(optimizer=dict( type='Adam', lr=2e-2, ))
learning policy
param_scheduler = [ dict( type='LinearLR', begin=0, end=500, start_factor=0.001, by_epoch=False), # warm-up dict( type='MultiStepLR', begin=0, end=210, milestones=[170, 190, 200], gamma=0.1, by_epoch=True) ]
automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=256)
hooks
default_hooks = dict(checkpoint=dict(save_best='coco/AP', rule='greater'))
codec settings
multiple kernel_sizes of heatmap gaussian for 'Megvii' approach.
kernel_sizes = [11, 9, 7, 5] codec = [ dict( type='MegviiHeatmap', input_size=(192, 256), heatmap_size=(48, 64), kernel_size=kernel_size) for kernel_size in kernel_sizes ]
model settings
model = dict( type='TopdownPoseEstimator', data_preprocessor=dict( type='PoseDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='RSN', unit_channels=256, num_stages=1, num_units=4, num_blocks=[2, 2, 2, 2], num_steps=4, norm_cfg=dict(type='BN'), ), head=dict( type='MSPNHead', out_shape=(64, 48), unit_channels=256, out_channels=6, num_stages=1, num_units=4, norm_cfg=dict(type='BN'),
each sub list is for a stage
base dataset settings
dataset_type = 'CocoDataset' data_mode = 'topdown' data_root = '/home/meng/Desktop/wjl-project/mmpose/data/Plane_coco/'
pipelines
train_pipeline = [ dict(type='LoadImage'), dict(type='GetBBoxCenterScale'), dict(type='RandomFlip', direction='horizontal'), dict(type='RandomHalfBody'), dict(type='RandomBBoxTransform'), dict(type='TopdownAffine', input_size=codec[0]['input_size']), dict(type='GenerateTarget', multilevel=True, encoder=codec), dict(type='PackPoseInputs') ]
val_pipeline = [ dict(type='LoadImage'), dict(type='GetBBoxCenterScale'), dict(type='TopdownAffine', input_size=codec[0]['input_size']), dict(type='PackPoseInputs') ]
data loaders
train_dataloader = dict( batch_size=32, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, data_mode=data_mode, ann_file='train_coco.json', data_prefix=dict(img='images/'), pipeline=train_pipeline, metainfo=dict(from_file='configs/base/datasets/coco_Plane.py'), )) val_dataloader = dict( batch_size=32, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), dataset=dict( type=dataset_type, data_root=data_root, data_mode=data_mode, ann_file='val_coco.json', data_prefix=dict(img='images/'), test_mode=True, bbox_file=None, pipeline=val_pipeline, metainfo=dict(from_file='configs/base/datasets/coco_Plane.py'), )) test_dataloader = val_dataloader
evaluators
val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'val_coco.json', nms_mode='none') test_evaluator = val_evaluator
fp16 settings
fp16 = dict(loss_scale='dynamic')
Reproduces the problem - command or script
python tools/train.py /home/meng/Desktop/wjl-project/mmpose/data/td-hm_rsn18_8xb32-210e_coco-256x192.py
Reproduces the problem - error message
Traceback (most recent call last): File "tools/train.py", line 162, in
main()
File "tools/train.py", line 158, in main
runner.train()
File "/home/meng/anaconda3/envs/mmpose/lib/python3.8/site-packages/mmengine/runner/runner.py", line 1777, in train
model = self.train_loop.run() # type: ignore
File "/home/meng/anaconda3/envs/mmpose/lib/python3.8/site-packages/mmengine/runner/loops.py", line 96, in run
self.run_epoch()
File "/home/meng/anaconda3/envs/mmpose/lib/python3.8/site-packages/mmengine/runner/loops.py", line 112, in run_epoch
self.run_iter(idx, data_batch)
File "/home/meng/anaconda3/envs/mmpose/lib/python3.8/site-packages/mmengine/runner/loops.py", line 128, in run_iter
outputs = self.runner.model.train_step(
File "/home/meng/anaconda3/envs/mmpose/lib/python3.8/site-packages/mmengine/model/base_model/base_model.py", line 114, in train_step
losses = self._run_forward(data, mode='loss') # type: ignore
File "/home/meng/anaconda3/envs/mmpose/lib/python3.8/site-packages/mmengine/model/base_model/base_model.py", line 361, in _run_forward
results = self(data, mode=mode)
File "/home/meng/anaconda3/envs/mmpose/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(*input, *kwargs)
File "/home/meng/Desktop/wjl-project/mmpose/mmpose/models/pose_estimators/base.py", line 155, in forward
return self.loss(inputs, data_samples)
File "/home/meng/Desktop/wjl-project/mmpose/mmpose/models/pose_estimators/topdown.py", line 74, in loss
self.head.loss(feats, data_samples, train_cfg=self.train_cfg))
File "/home/meng/Desktop/wjl-project/mmpose/mmpose/models/heads/heatmap_heads/mspn_head.py", line 415, in loss
loss_i = loss_func(msmu_pred_heatmaps[i], gt_heatmaps,
File "/home/meng/anaconda3/envs/mmpose/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1194, in _call_impl
return forward_call(input, kwargs)
File "/home/meng/Desktop/wjl-project/mmpose/mmpose/models/losses/heatmap_loss.py", line 63, in forward
_mask = self._get_mask(target, target_weights, mask)
File "/home/meng/Desktop/wjl-project/mmpose/mmpose/models/losses/heatmap_loss.py", line 93, in _get_mask
assert (target_weights.ndim in (2, 4) and target_weights.shape
AssertionError: target_weights and target have mismatched shapes torch.Size([128, 6]) v.s. torch.Size([32, 6, 64, 48])
Additional information
No response