Open 6667777 opened 2 months ago
any update?
import torch from mmpose.apis import init_model pose_estimator = init_model( './configs/rtmw3d-l_8xb64_cocktail14-384x288.py', 'rtmw3d-l_8xb64_cocktail14-384x288-794dbc78_20240626.pth', device='cpu')
input = torch.randn(1, 3, 384, 288) data_samples = {}
torch.onnx.export(
pose_estimator,
(input, data_samples),
"model.onnx",
input_names=["input"],
output_names=["output"],
verbose=True
)
import torch from mmpose.apis import init_model pose_estimator = init_model( './configs/rtmw3d-l_8xb64_cocktail14-384x288.py', 'rtmw3d-l_8xb64_cocktail14-384x288-794dbc78_20240626.pth', device='cpu')
input = torch.randn(1, 3, 384, 288) data_samples = {}
torch.onnx.export( pose_estimator, (input, data_samples), "model.onnx", input_names=["input"], output_names=["output"], verbose=True )
do you have demo code on pre/post-processing ?
What is the feature?
I wanted to convert the RTMPose3D model to onnx, but there was no tutorial to do so. I also tried to convert the RTMPose3D model in the same way as converting RTMPose, but failed
Any other context?
No response