Open siddhi-wiai opened 4 months ago
Hi @siddhi-wiai , I encountered the same issue and found a solution as follows:
train_pipeline
(just copied from the base dataset)_delete_=True
to avoid an error
# >>>>>>>>>>>>>>> Override dataset settings here >>>>>>>>>>>>>>>>>>>
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
crop_ratio_range=(0.2, 1.0),
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5),
dict(type='PackInputs')
]
train_dataloader = dict(
batch_size=128,
dataset=dict(
type='CustomDataset',
data_root='data/custom_dataset/',
ann_file='', # We assume you are using the sub-folder format without ann_file
data_prefix='', # The `data_root` is the data_prefix directly.
with_label=False,
_delete_=True, # Need to remove `split` keyword
pipeline=train_pipeline # Need to specify pipeline
)
)
# <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Branch
main branch (mmpretrain version)
Describe the bug
I have followed the exact same steps as mentioned in the tutorial for pre-training MAE on a custom dataset, but getting the following error:
File "/home/XXX/code_siddhi/mmpretrain/mmpretrain/models/utils/data_preprocessor.py", line 261, in
_input[:, [2, 1, 0], ...] for _input in batch_inputs
TypeError: string indices must be integers
Environment
{'sys.platform': 'linux', 'Python': '3.8.19 (default, Mar 20 2024, 19:58:24) [GCC 11.2.0]', 'CUDA available': True, 'MUSA available': False, 'numpy_random_seed': 2147483648, 'GPU 0': 'NVIDIA L4', 'CUDA_HOME': '/usr/local/cuda', 'NVCC': 'Cuda compilation tools, release 12.3, V12.3.107', 'GCC': 'gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0', 'PyTorch': '1.10.1', 'TorchVision': '0.11.2', 'OpenCV': '4.10.0', 'MMEngine': '0.10.4', 'MMCV': '2.0.1', 'MMPreTrain': '1.2.0+17a886c'}
Other information
cast_data()
frommmengine.model.BaseDataPreprocessor
.