Open 376498485 opened 2 years ago
Hi, do you use the latest version of mmdet?
Hi, do you use the latest version of mmdet?
My mmdet's version is 2.24. Maybe not all detectors in mmdet can be used with BYTE in mmtrack.
Hi, do you use the latest version of mmdet?
My mmdet's version is 2.24. Maybe not all detectors in mmdet can be used with BYTE in mmtrack.
Have you tried other detectors? And do they work?
Hi, do you use the latest version of mmdet?
My mmdet's version is 2.24. Maybe not all detectors in mmdet can be used with BYTE in mmtrack.
Have you tried other detectors? And do they work?
I have try Sparse RCNN, and it works. But deformable_detr、tood not work. I just modify the detector in config files. I think RCNN-like models in mmtrack can be used with bytetrack.
Mayby you should set the "ref_img_sampler=None" in the "data" iterm.
Hi, lijinrun
I think there is something wrong with your data configuration file. Please use the following configuration, which is equivalent to mmtracking/configs/_base_/datasets/mot_challenge_det.py
. When we train bytetrack
, we don't need the ref_img
, so it will report the error you pointed out. Using the following configuration file, it can be compatible with any detector.
dataset_type = 'CocoDataset'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True, file_client_args=file_client_args,),
dict(type='LoadAnnotations', with_bbox=True,file_client_args=file_client_args, ),
dict(
type='Resize',
img_scale=(1088, 1088),
ratio_range=(0.8, 1.2),
keep_ratio=True,
bbox_clip_border=False),
dict(type='PhotoMetricDistortion'),
dict(type='RandomCrop', crop_size=(1088, 1088), bbox_clip_border=False),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile',file_client_args=file_client_args, ),
dict(
type='MultiScaleFlipAug',
img_scale=(1088, 1088),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data_root = 'data/MOT17/'
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
file_client_args=file_client_args,
ann_file=data_root + 'annotations/half-train_cocoformat.json',
img_prefix=data_root + 'train',
classes=('pedestrian', ),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
file_client_args=file_client_args,
ann_file=data_root + 'annotations/half-val_cocoformat.json',
img_prefix=data_root + 'train',
classes=('pedestrian', ),
pipeline=test_pipeline),
test=dict(
type=dataset_type,
file_client_args=file_client_args,
ann_file=data_root + 'annotations/half-val_cocoformat.json',
img_prefix=data_root + 'train',
classes=('pedestrian', ),
pipeline=test_pipeline))
Hi, do you use the latest version of mmdet?
My mmdet's version is 2.24. Maybe not all detectors in mmdet can be used with BYTE in mmtrack.
Have you tried other detectors? And do they work?
I have try Sparse RCNN, and it works. But deformable_detr、tood not work. I just modify the detector in config files. I think RCNN-like models in mmtrack can be used with bytetrack.
You said that it can run on sparse_rcnn, because the implementation of mmdet supports any parameters.
Hi, When I use vfnet(VarifocalNet) in mmdetection and bytetrack, I meet the following errors: My config is as follows:
I will very appreciate it if you can help me.