OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.
I tested SELSA with temporal ROI on my custom dataset but it doesn't work well on far objects, I tried to use YOLOX model instead of the Faster R-CNN detector, I changed the config to :
I faced the following error when I start to train with it:
2022-05-05 14:05:59,904 - mmtrack - INFO - Set random seed to 1726823364, deterministic: False
Traceback (most recent call last):
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/registry.py", line 52, in build_from_cfg
return obj_cls(**args)
TypeError: __init__() got an unexpected keyword argument 'roi_head'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/registry.py", line 52, in build_from_cfg
return obj_cls(**args)
File "/home/nvidia/Downloads/mmtracking/mmtrack/models/vid/selsa.py", line 37, in __init__
self.detector = build_detector(detector)
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmdet/models/builder.py", line 59, in build_detector
cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg))
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/registry.py", line 212, in build
return self.build_func(*args, **kwargs, registry=self)
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/cnn/builder.py", line 27, in build_model_from_cfg
return build_from_cfg(cfg, registry, default_args)
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/registry.py", line 55, in build_from_cfg
raise type(e)(f'{obj_cls.__name__}: {e}')
TypeError: YOLOX: __init__() got an unexpected keyword argument 'roi_head'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "tools/train.py", line 210, in <module>
main()
File "tools/train.py", line 182, in main
model = build_model(cfg.model)
File "/home/nvidia/Downloads/mmtracking/mmtrack/models/builder.py", line 35, in build_model
return MODELS.build(cfg)
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/registry.py", line 212, in build
return self.build_func(*args, **kwargs, registry=self)
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/cnn/builder.py", line 27, in build_model_from_cfg
return build_from_cfg(cfg, registry, default_args)
File "/home/nvidia/miniconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/registry.py", line 55, in build_from_cfg
raise type(e)(f'{obj_cls.__name__}: {e}')
TypeError: SELSA: YOLOX: __init__() got an unexpected keyword argument 'roi_head'
SELSA and SELSA with temporal ROI align need proposals generated by two stage detector.
If you want to use yolox in vid, I suggest you use DFF or FGFA method
I tested SELSA with temporal ROI on my custom dataset but it doesn't work well on far objects, I tried to use YOLOX model instead of the Faster R-CNN detector, I changed the config to :
I faced the following error when I start to train with it:
Any suggestions?