open-mmlab / mmtracking

OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.
https://mmtracking.readthedocs.io/en/latest/
Apache License 2.0
3.58k stars 598 forks source link

KeyError: 'detections' - error with loading detections from dataset #580

Open HelenTsvetkova opened 2 years ago

HelenTsvetkova commented 2 years ago

Hello! I am trying to run demo/demo_mot_vis.py with my own bounding boxes from MTA dataset. Authors of MTA dataset provide script to convert it into COCO format. I run this script and it created dir with images and file coords.json with information about bboxes. I convert it from .json to .pkl (coords.pkl) format just as:

import pickle
# Read as bytes test
with open('test/coords.json', 'rb') as f:
    data =  f.read()
# Save as pickle
with open('test/coords.pkl', 'wb') as f:
    pickle.dump(data, f)

Then i edited file configs/mot/deepsort/deepsort_faster-rcnn_fpn_4e_mot17-public-half.py by changing data_root and detection_file to my custom (path to coords.pkl).

Then i run demo and received error:

'detections'
  File "/home/helen/tracking_projects/mmtracking-master/mmtrack/datasets/pipelines/loading.py", line 101, in __call__
    outs_det = results2outs(bbox_results=results['detections'])
  File "/home/helen/tracking_projects/mmtracking-master/mmtrack/apis/inference.py", line 108, in inference_mot
    data = test_pipeline(data)
  File "/home/helen/tracking_projects/mmtracking-master/demo/demo_mot_vis.py", line 81, in main
    result = inference_mot(model, img, frame_id=i)
  File "/home/helen/tracking_projects/mmtracking-master/demo/demo_mot_vis.py", line 106, in <module>
    main()

File coords.json have the following structure: image

What i've done wrong..? Maybe I tottaly misunderstand something.

dyhBUPT commented 2 years ago

Hi, the reason may be that the "detections" is not included in the inference.py. (variable data in function inference_mot) For demo_mot_vis.py, you are suggested to use the "private config", not the public one.

In your case, maybe you want to use your own detections. You can use the tools/test.py to run inference.

HelenTsvetkova commented 2 years ago

Yes, I want to use my own detections as i mentioned above. I tryed to use "public config" like sugested here issue#127. I want to try tracking algorithms avoiding the detector stage of operation. Just tracking, using pre-detected bboxes. Do i need to run tools/test.py to achieve my goal..?

dyhBUPT commented 2 years ago

Yes, if you want to use the "public config", please use tools/test.py instead of demo_mot_vis.py. Please let me know if this helps.

Best wishes.

HelenTsvetkova commented 2 years ago

Thank you for your response! I created new config file :

_base_ = ['../mot/deepsort/deepsort_faster-rcnn_fpn_4e_mot17-private-half.py']

dataset_type = 'CocoDataset'
classes = ('person', 'background')
root_path = "/home/helen/DataSets/MTA/coco_MTA_ext_short/"
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        classes=classes,
        ann_file=root_path+'train/coords.pkl',
        img_prefix=root_path+'train/images/'),
    val=dict(
        type=dataset_type,
        classes=classes,
        ann_file=root_path+'test/coords.pkl',
        img_prefix=root_path+'test/images/',),
    test=dict(
        type=dataset_type,
        classes=classes,
        ann_file=root_path+'test/coords.pkl',
        img_prefix=root_path+'test/images/',)
        )

Then I run tools/test.py with new config file and got error: image

dyhBUPT commented 2 years ago

Hi, It may be caused by that you are running a mot tracker DeepSORT but set dataset_type = CocoDataset. Use the 'MOTChallengeDataset' instead would help.

HelenTsvetkova commented 2 years ago

May be.. I changed dataset type to MOTChallengeDataset and got this: image

dyhBUPT commented 2 years ago

Please show the complete error information.

One thing you should note is, you should use the public config instead of private config when you provide additional detection results.

HelenTsvetkova commented 2 years ago

My config file:

_base_ = ['../mot/deepsort/deepsort_faster-rcnn_fpn_4e_mot17-public-half.py']

dataset_type = 'MOTChallengeDataset'
classes = ('person', 'background')
root_path = "/home/helen/DataSets/MTA/coco_MTA_ext_short/"
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        classes=classes,
        ann_file=root_path+'test/coords.json',
        detection_file=root_path + 'test/coords.pkl',
        img_prefix=root_path+'test/images/'),
    val=dict(
        type=dataset_type,
        classes=classes,
        ann_file=root_path+'test/coords.json',
        detection_file=root_path + 'test/coords.pkl',
        img_prefix=root_path+'test/images/',),
    test=dict(
        type=dataset_type,
        classes=classes,
        ann_file=root_path+'test/coords.json',
        detection_file=root_path + 'test/coords.pkl',
        img_prefix=root_path+'test/images/',)
        )

Errors:

Traceback (most recent call last):
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_frame.py", line 948, in trace_dispatch
    self.do_wait_suspend(thread, frame, event, arg)
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_frame.py", line 164, in do_wait_suspend
    self._args[0].do_wait_suspend(*args, **kwargs)
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/_vendored/pydevd/pydevd.py", line 2023, in do_wait_suspend
    keep_suspended = self._do_wait_suspend(thread, frame, event, arg, suspend_type, from_this_thread, frames_tracker)
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/_vendored/pydevd/pydevd.py", line 2046, in _do_wait_suspend
    self._activate_gui_if_needed()
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/_vendored/pydevd/pydevd.py", line 1571, in _activate_gui_if_needed
    activate_function()
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/_vendored/pydevd/pydevd.py", line 1555, in <lambda>
    self.mpl_modules_for_patching = {"matplotlib": lambda: activate_matplotlib(do_enable_gui),
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/_vendored/pydevd/pydev_ipython/matplotlibtools.py", line 93, in activate_matplotlib
    gui, backend = find_gui_and_backend()
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/_vendored/pydevd/pydev_ipython/matplotlibtools.py", line 45, in find_gui_and_backend
    backend = matplotlib.rcParams['backend']
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/matplotlib/_api/__init__.py", line 223, in __getattr__
    f"module {cls.__module__!r} has no attribute {name!r}")
AttributeError: module 'matplotlib' has no attribute 'rcParams'
/home/helen/tracking_projects/mmtracking-master/mmtrack/core/utils/misc.py:25: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting OMP_NUM_THREADS environment variable for each process '
/home/helen/tracking_projects/mmtracking-master/mmtrack/core/utils/misc.py:35: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
  f'Setting MKL_NUM_THREADS environment variable for each process '
loading annotations into memory...
Done (t=0.17s)
creating index...
index created!
Traceback (most recent call last):
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/registry.py", line 66, in build_from_cfg
    return obj_cls(**args)
  File "/home/helen/tracking_projects/mmtracking-master/mmtrack/datasets/mot_challenge_dataset.py", line 50, in __init__
    self.detections = self.load_detections(detection_file)
  File "/home/helen/tracking_projects/mmtracking-master/mmtrack/datasets/mot_challenge_dataset.py", line 70, in load_detections
    raise TypeError('detections must be a dict or a list.')
TypeError: detections must be a dict or a list.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/__main__.py", line 45, in <module>
    cli.main()
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/../debugpy/server/cli.py", line 444, in main
    run()
  File "/home/helen/.vscode/extensions/ms-python.python-2022.6.3/pythonFiles/lib/python/debugpy/../debugpy/server/cli.py", line 285, in run_file
    runpy.run_path(target_as_str, run_name=compat.force_str("__main__"))
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 263, in run_path
    pkg_name=pkg_name, script_name=fname)
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 96, in _run_module_code
    mod_name, mod_spec, pkg_name, script_name)
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "tools/test.py", line 14, in <module>
    from mmdet.apis import set_random_seed
  File "tools/test.py", line 151, in main
    dataset = build_dataset(cfg.data.test)
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmdet/datasets/builder.py", line 82, in build_dataset
    dataset = build_from_cfg(cfg, DATASETS, default_args)
  File "/home/helen/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/registry.py", line 69, in build_from_cfg
    raise type(e)(f'{obj_cls.__name__}: {e}')
TypeError: MOTChallengeDataset: detections must be a dict or a list.

To be honest, I don't have any detections_file, I have got only annotation file in 'json and .pkl format... Should I generate detection file from annotation file by myself?

dyhBUPT commented 2 years ago

Hi, Please make sure a correct format your detection_file. Codes of mot_challenge_dataset.py and mot2coco.py would help as a reference.