Closed MtrsChJG closed 1 month ago
I encountered the same problem
The config does not support the latest version(0.2.0) unimernet.
So use pip install unimernet==0.1.6
command to downgrade, and this will solve your issue.
The config does not support the latest version(0.2.0) unimernet. So use
pip install unimernet==0.1.6
command to downgrade, and this will solve your issue.
As you said, it's an issue with the unimernet library version. Thank you very much, my problem has been resolved very well.
I am a green hand using LLM, and the error message shows that the parameter shapes of my model and the pre-trained model do not match. How can I modify the code? I directly used the author's code without any changes. Here are some detailed information:
Here is the debugging information: 2024-09-06 09:08:25 Started! CustomVisionEncoderDecoderModel init VariableUnimerNetModel init VariableUnimerNetPatchEmbeddings init VariableUnimerNetModel init VariableUnimerNetPatchEmbeddings init CustomMBartForCausalLM init CustomMBartDecoder init Traceback (most recent call last): File "/root/pipeline/PDF-Extract-Kit-main/pdf_extract.py", line 101, in
mfr_model, mfr_vis_processors = mfr_model_init(model_configs['model_args']['mfr_weight'], device=device)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/pipeline/PDF-Extract-Kit-main/pdf_extract.py", line 43, in mfr_model_init
model = task.build_model(cfg)
^^^^^^^^^^^^^^^^^^^^^
File "/root/pipeline/lib/python3.12/site-packages/unimernet/tasks/base_task.py", line 33, in build_model
return model_cls.from_config(model_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/pipeline/lib/python3.12/site-packages/unimernet/models/unimernet/unimernet.py", line 108, in from_config
model.load_checkpoint_from_config(cfg)
File "/root/pipeline/lib/python3.12/site-packages/unimernet/models/base_model.py", line 97, in load_checkpoint_from_config
self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs)
File "/root/pipeline/lib/python3.12/site-packages/unimernet/models/blip2_models/blip2.py", line 102, in load_from_pretrained
msg = self.load_state_dict(state_dict, strict=False)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/pipeline/lib/python3.12/site-packages/torch/nn/modules/module.py", line 2189, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for UniMERModel:
size mismatch for model.model.decoder.model.decoder.layers.0.self_attn.k_proj.weight: copying a param with shape torch.Size([1024, 1024]) from checkpoint, the shape in c is torch.Size([512, 1024]).
size mismatch for model.model.decoder.model.decoder.layers.0.self_attn.k_proj.bias: copying a param with shape torch.Size([1024]) from checkpoint, the shape in current mh.Size([512]).