Open bree-z opened 4 years ago
That’s my mistake - interchange 135 and 111 in the IP address. 146.111.135.122
@drdrew42 Thanks! I'm now able to see the site.
However, I'm unable to authenticate. The username/password combos you list here aren't working for me https://openlab.citytech.cuny.edu/groups/openlab-webwork-integration-project/forum/topic/pre-release-testing-site/#post-59191 Could you please verify?
I just confirmed that the three accounts are working as expected.
Oh, it's only for WW-Dev - sorry about that. I'm in and can begin verifying.
@drdrew42 In my initial tests, I'm not seeing the problemPath
key in the POST payload. Here's what I'm getting:
[webwork_user] => studentA
[problem_set] => Derivatives_-_Limit_Definition
[problem_number] => 2
[problem_id] =>
[problem_text] => <div class="PGML">
guiding text:
<ul type="disc" style="margin:0; padding-left:2.25em">
<li>fix the point where we want instantaneous slope: {{{LATEX_DELIM_INLINE_OPEN}}}A: (a, f(a)){{{LATEX_DELIM_INLINE_CLOSE}}}
</li>
<li>let second point, {{{LATEX_DELIM_INLINE_OPEN}}}B{{{LATEX_DELIM_INLINE_CLOSE}}}, vary so that it can “approach” {{{LATEX_DELIM_INLINE_OPEN}}}A{{{LATEX_DELIM_INLINE_CLOSE}}}: {{{LATEX_DELIM_INLINE_OPEN}}}B: (x, f(x)){{{LATEX_DELIM_INLINE_CLOSE}}}
</li>
<li>then the secant slope: {{{LATEX_DELIM_INLINE_OPEN}}}\dfrac{\Delta y}{\Delta x} = \dfrac{f(x)-f(a)}{x-a}{{{LATEX_DELIM_INLINE_CLOSE}}}
</li>
<li>note that {{{LATEX_DELIM_INLINE_OPEN}}}\dfrac{\Delta y}{\Delta x}{{{LATEX_DELIM_INLINE_CLOSE}}} is undefined if we let {{{LATEX_DELIM_INLINE_OPEN}}}x=a{{{LATEX_DELIM_INLINE_CLOSE}}}
</li>
<li>in other words, we cannot make {{{LATEX_DELIM_INLINE_OPEN}}}B{{{LATEX_DELIM_INLINE_CLOSE}}} and {{{LATEX_DELIM_INLINE_OPEN}}}A{{{LATEX_DELIM_INLINE_CLOSE}}} be the same point... duh, slope needs two points!
</li>
<li>limits let us describe having two separate points that get infinitely close: for {{{LATEX_DELIM_INLINE_OPEN}}}B{{{LATEX_DELIM_INLINE_CLOSE}}} to “approach” {{{LATEX_DELIM_INLINE_OPEN}}}A{{{LATEX_DELIM_INLINE_CLOSE}}}, we use {{{LATEX_DELIM_INLINE_OPEN}}}\displaystyle{\lim_{x \to a} \left( \dfrac{\Delta y}{\Delta x} \right)}{{{LATEX_DELIM_INLINE_CLOSE}}}
</li>
<li>SO instantaneous slope: {{{LATEX_DELIM_INLINE_OPEN}}}\displaystyle{ \dfrac{dy}{dx} = \lim_{x \to a} \left(\dfrac{f(x)-f(a)}{x-a}\right) }{{{LATEX_DELIM_INLINE_CLOSE}}}
</li>
<li>note: {{{LATEX_DELIM_INLINE_OPEN}}}dy{{{LATEX_DELIM_INLINE_CLOSE}}} and {{{LATEX_DELIM_INLINE_OPEN}}}dx{{{LATEX_DELIM_INLINE_CLOSE}}} take the place of {{{LATEX_DELIM_INLINE_OPEN}}}\Delta y{{{LATEX_DELIM_INLINE_CLOSE}}} and {{{LATEX_DELIM_INLINE_OPEN}}}\Delta x{{{LATEX_DELIM_INLINE_CLOSE}}} because with instantanous rates of change, the individual “change” in {{{LATEX_DELIM_INLINE_OPEN}}}y{{{LATEX_DELIM_INLINE_CLOSE}}} or in {{{LATEX_DELIM_INLINE_OPEN}}}x{{{LATEX_DELIM_INLINE_CLOSE}}} is zero (we don’t have two points for there to be any {{{LATEX_DELIM_INLINE_OPEN}}}\Delta{{{LATEX_DELIM_INLINE_CLOSE}}}).
</li>
<li>however: we’ve seen before that ratios of values that approach zero (as in {{{LATEX_DELIM_INLINE_OPEN}}}\to \frac{0}{0}{{{LATEX_DELIM_INLINE_CLOSE}}}) may still produce a real limit.</li>
</ul>
<div style="margin-top:1em"></div>
<div style="text-align:center; margin:0">
<h3 style="margin:0">The instantaneous slope of {{{LATEX_DELIM_INLINE_OPEN}}}f(x){{{LATEX_DELIM_INLINE_CLOSE}}}</h3>
<h4 style="margin:0">(when {{{LATEX_DELIM_INLINE_OPEN}}}f(x){{{LATEX_DELIM_INLINE_CLOSE}}} is a polynomial)</h4>
</div>
<div style="margin-top:1em"></div>
<TABLE style = "border-collapse:collapse; text-align:center; margin:0 auto; "><colgroup><col style = "text-align:center; white-space:nowrap; "></colgroup><TBODY><TR><TD style = "padding-left:6pt; padding-right:6pt; padding: 1pt;text-align:center; white-space:nowrap; "><A href="http://146.111.135.122/webwork2_files/tmp/WW-Dev//gif/6869c387-57f1-3b9d-bca0-8046a2b66149___412c35c6-cfbc-375d-9219-1f6ccae06089.png" TARGET="_blank" onclick="window.open(this.href,this.target, 'width=430,height=430,scrollbars=yes,resizable=on'); return false;" >
<IMG src="http://146.111.135.122/webwork2_files/tmp/WW-Dev//gif/6869c387-57f1-3b9d-bca0-8046a2b66149___412c35c6-cfbc-375d-9219-1f6ccae06089.png" WIDTH="300" height = "300" >
</A>
</TD></TR><TR><TD style = "padding-left:6pt; padding-right:6pt; padding: 1pt;text-align:center; white-space:nowrap; padding-bottom:10pt;">{{{LATEX_DELIM_INLINE_OPEN}}}f(x) = x^{2}+4x-1{{{LATEX_DELIM_INLINE_CLOSE}}}</TD></TR><TR><TD style = "padding-left:6pt; padding-right:6pt; padding: 1pt;text-align:center; white-space:nowrap; ">compute the instantaneous slope at: {{{LATEX_DELIM_INLINE_OPEN}}}(-1,-4){{{LATEX_DELIM_INLINE_CLOSE}}}</TD></TR></TBODY></TABLE>
<div style="margin-top:1em"></div>
The secant slope through the points {{{LATEX_DELIM_INLINE_OPEN}}}(x,f(x)){{{LATEX_DELIM_INLINE_CLOSE}}} and {{{LATEX_DELIM_INLINE_OPEN}}}(-1,{-4}){{{LATEX_DELIM_INLINE_CLOSE}}} is: {{{LATEX_DELIM_INLINE_OPEN}}}\displaystyle{ \frac{\Delta y}{\Delta x} = }{{{LATEX_DELIM_INLINE_CLOSE}}} ___
<div style="margin-top:1em"></div>
And the instantaneous slope through {{{LATEX_DELIM_INLINE_OPEN}}}(-1,{-4}){{{LATEX_DELIM_INLINE_CLOSE}}} is: {{{LATEX_DELIM_INLINE_OPEN}}}\displaystyle{ \lim_{x \to -1} \left( \frac{\Delta y}{\Delta x} \right) = }{{{LATEX_DELIM_INLINE_CLOSE}}} ___
<div style="margin-top:1em"></div>
</div>
Note: You can earn partial credit on this problem.
[course] => WW
[section] => WW-Dev
[emailableURL] =>
[randomSeed] => 3554
[notifyAddresses] =>
[studentName] => Student A
[remote_course_url] => http://146.111.135.122/webwork2/WW-Dev/
[remote_problem_url] => http://146.111.135.122/webwork2/WW-Dev/Derivatives_-_Limit_Definition/2/
I do see some of the other new keys described at https://github.com/livinglab/webwork-for-wordpress/issues/169#issuecomment-533910193, like studentName
, randomSeed
, notifyAddresses
, emailableURL
(though the latter two are empty).
okay, let me investigate - I'm on a call until 4/4:30
I've updated the Dev server to use the most recent (and currently in the develop branch) iteration of the feedback-form revisions.
["user"]=>
string(5) "admin"
["effectiveUser"]=>
string(5) "admin"
["key"]=>
string(32) "6ropX2Qr21QKF1HkP8CZkrdnEHv5f4Jo"
["studentName"]=>
string(13) "Administrator"
["showHints"]=>
string(1) "1"
["displayMode"]=>
string(7) "MathJax"
["randomSeed"]=>
string(4) "2459"
["showSolutions"]=>
string(1) "1"
["showCorrectAnswers"]=>
string(1) "0"
["module"]=>
string(34) "WeBWorK::ContentGenerator::Problem"
["set"]=>
string(30) "Derivatives_-_Limit_Definition"
["showOldAnswers"]=>
string(1) "1"
["pg_object"]=>
string(11916) "MADNESS"
["problemPath"]=>
string(80) "CUNY/CityTech/Calculus/setDerivatives_-_Limit_Definition/delta-to-d-continued.pg"
["emailableURL"]=>
string(92) "http://146.111.135.122/webwork2/WW-Dev/Derivatives_-_Limit_Definition/2/?effectiveUser=admin"
["notifyAddresses"]=>
string(45) "me@institution.edu;prof@instructor.edu"
["problem"]=>
string(1) "2"
["feedbackForm"]=>
string(12) "Ask For Help"
The username is encoded RFC 2047 - as the WeBWorK DB now supports an extended character set for usernames.
Thanks @drdrew42 - it looks like we're almost there, but now Ask for Help is pointing to what looks like your test script at http://146.111.135.122/echo.php
Oh man, classic. 🤦♂ I just put it back.
Thanks, @drdrew42 - I can confirm that POST data is being sent properly, including the critical problemPath
.
Now I'm seeing that some of the problem data is corrupted on WW-Dev. See eg http://146.111.135.122/webwork2/WW-Dev/Functions_-_Difference_Quotient/3/?effectiveUser=studentA&key=s2Oa7ievtijHqUOZ8h9JeGh4UZfstjt0&user=studentA. See screenshots:
Other questions are rendering a bit more, but still seem incomplete. The beginning of this question appears to be truncated: http://146.111.135.122/webwork2/WW-Dev/Derivatives_-_Limit_Definition/1/?user=studentA&effectiveUser=studentA&key=s2Oa7ievtijHqUOZ8h9JeGh4UZfstjt0
Thanks for having a look - we want to be sure we're testing valid data.
Thanks for the heads up - all rendering of problems on the dev site will trigger this PG warning about TikZImage... I'm on the develop branch and there are some issues still being worked out.
The missing files (problem file empty!) have been located, and should now render properly.
The problem that looks truncated is rendered as expected.
Thanks! @bree-z I think this means that we are ready to begin testing, with the caveat described by @drdrew42 that there may be some minor quirks on the WeBWorK side.
Thanks to you both! I'm finally able to get started with testing. I see the warnings on the WeBWorK site, but otherwise it seems to be working fine. I'll close this once I've done some more testing.
Hi @drdrew42 - just moving this conversation over from our OpenLab group:
@boonebgorges noted that http://146.135.111.122/ is not resolving. I'm also seeing the same thing. Is it configured to be publicly accessible?
Thanks!