openvino-dev-samples / chatglm3.openvino

This sample shows how to deploy ChatGLM3 using OpenVINO
19 stars 5 forks source link

对chatglm3-6b-32k模型转换失败,报错信息如下所示: #16

Open wanglaiqi opened 2 months ago

wanglaiqi commented 2 months ago

Framework not specified. Using pt to export the model. ====Exporting IR=====

Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s] Loading checkpoint shards: 14%|█▍ | 1/7 [00:26<02:36, 26.10s/it] Loading checkpoint shards: 29%|██▊ | 2/7 [00:48<02:00, 24.16s/it] Loading checkpoint shards: 43%|████▎ | 3/7 [01:13<01:38, 24.57s/it] Loading checkpoint shards: 57%|█████▋ | 4/7 [01:41<01:17, 25.85s/it] Loading checkpoint shards: 71%|███████▏ | 5/7 [01:53<00:41, 20.73s/it] Loading checkpoint shards: 86%|████████▌ | 6/7 [02:23<00:23, 23.81s/it] Loading checkpoint shards: 100%|██████████| 7/7 [02:28<00:00, 17.72s/it] Loading checkpoint shards: 100%|██████████| 7/7 [02:28<00:00, 21.20s/it] Using framework PyTorch: 2.2.2+cpu WARNING:root:Cannot apply model.to_bettertransformer because of the exception: The model type chatglm is not yet supported to be used with BetterTransformer. Feel free to open an issue at https://github.com/huggingface/optimum/issues if you would like this model type to be supported. Currently supported models are: dict_keys(['albert', 'bark', 'bart', 'bert', 'bert-generation', 'blenderbot', 'bloom', 'camembert', 'blip-2', 'clip', 'codegen', 'data2vec-text', 'deit', 'distilbert', 'electra', 'ernie', 'fsmt', 'gpt2', 'gptj', 'gpt_neo', 'gpt_neox', 'hubert', 'layoutlm', 'm2m_100', 'marian', 'markuplm', 'mbart', 'opt', 'pegasus', 'rembert', 'prophetnet', 'roberta', 'roc_bert', 'roformer', 'splinter', 'tapas', 't5', 'vilt', 'vit', 'vit_mae', 'vit_msn', 'wav2vec2', 'xlm-roberta', 'yolos']).. Usage model with stateful=True may be non-effective if model does not contain torch.functional.scaled_dot_product_attention Overriding 1 configuration item(s)

During handling of the above exception, another exception occurred:

openvino-dev-samples commented 1 month ago

Hi @wanglaiqi sorry for late reply.

Have you solved the issue ? Does this issue happen in default model ?