Closed simonbrandhorst closed 6 months ago
Should this really convert to MSolve?
No, there seems to be a check missing. I will have a look.
degree
refers to the degree of a homogeneous polynomial in a gradedd ring, returned as an element of the grading group. There is, however, always total_degree
.
julia> k = GF(2) Prime field of characteristic 2
julia> kt,t = polynomial_ring(k,:t) (Univariate polynomial ring in t over GF(2), t)
julia> Ft = fraction_field(kt) Fraction field of univariate polynomial ring in t over GF(2)
julia> P,(x,y) = polynomial_ring(Ft,[:x,:y]) (Multivariate polynomial ring in 2 variables over fraction field, AbstractAlgebra.Generic.MPoly{AbstractAlgebra.Generic.FracFieldElem{FqPolyRingElem}}[x, y])
julia> degree(x^2) ERROR: MethodError: no method matching degree(::AbstractAlgebra.Generic.MPoly{AbstractAlgebra.Generic.FracFieldElem{FqPolyRingElem}})
Closest candidates are: degree(::AbstractAlgebra.Generic.MPoly{T}, ::Int64) where T<:RingElement @ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/wVuNz/src/generic/MPoly.jl:806 degree(::MPolyRingElem{T}, ::Int64) where T<:RingElement @ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/wVuNz/src/MPoly.jl:372 degree(::MPolyRingElem{T}, ::MPolyRingElem{T}) where T<:RingElement @ AbstractAlgebra ~/.julia/packages/AbstractAlgebra/wVuNz/src/MPoly.jl:394 ...
Stacktrace: [1] top-level scope @ REPL[45]:1
julia> total_degree(x^2) 2
julia> P,(x,y) = graded_polynomial_ring(Ft,[:x,:y]) (Graded multivariate polynomial ring in 2 variables over fraction field, MPolyDecRingElem{AbstractAlgebra.Generic.FracFieldElem{FqPolyRingElem}, AbstractAlgebra.Generic.MPoly{AbstractAlgebra.Generic.FracFieldElem{FqPolyRingElem}}}[x, y])
julia> degree(x^2) [2]
Describe the bug Normal form throws an error
To Reproduce
Expected behavior Should compute a normal form
System (please complete the following information): Please paste the output of
Oscar.versioninfo(full=true)
below. If this does not work, please paste the output of Julia'sversioninfo()
and your Oscar version.@ederc @afkafkafk13