Open osuossu8 opened 3 years ago
Data Augmentation
Models
Training
I used a threshold of 0.3 on the framewise_output and 0.3 on the clipwise_output to reduce the impact of false positives.
inference I also applied 10 TTA by just adding the same audio sample 10 times in the batch and enabling Spec Augmentation.
#TTA の実装部分
for image in tensors:
image = image.unsqueeze(0).unsqueeze(0)
image = image.expand(image.shape[0], TTA, image.shape[2])
image = image.to(device)
with torch.no_grad():
prediction = model((image, None))
framewise_outputs = prediction["framewise_output"].detach(
).cpu().numpy()[0].mean(axis=0)
clipwise_outputs = prediction["clipwise_output"].detach(
).cpu().numpy()[0].mean(axis=0)
スレッドタイトル
メモ
ぶらさがってるコメントなど
それらを受けてのアイデア、コメントなど