owid / etl

A compute graph for loading and transforming OWID's data
https://docs.owid.io/projects/etl
MIT License
86 stars 23 forks source link

:bar_chart: global flourishing study: add private dataset #3522

Open antea04 opened 2 weeks ago

antea04 commented 2 weeks ago

(resolve owid/owid-issues#1649)

owidbot commented 2 weeks ago
Quick links (staging server): Site Dev Site Preview Admin Wizard Docs

Login: ssh owid@staging-site-gfs-wave-1

chart-diff: ❌
  • 0/26 reviewed charts
  • Modified: 0/0
  • New: 0/26
  • Rejected: 0
data-diff: ❌ Found differences ```diff = Dataset garden/antibiotics/2024-10-09/gram = Table gram ~ Dim country - - Removed values: 114 / 3876 (2.94%) year country 2007 Africa 2010 Africa 2005 Asia 2014 Asia 2014 Oceania ~ Dim year - - Removed values: 114 / 3876 (2.94%) country year Africa 2007 Africa 2010 Asia 2005 Asia 2014 Oceania 2014 ~ Column antibiotic_consumption__ddd_1_000_day (changed metadata, changed data) - - description: Population by country and year. - - description_short: Estimated [Defined Daily Doses](#dod:defined-daily-doses) per 1,000 people per day. ? --------------------------- ^ ^ + + description_short: Estimated defined daily doses (DDD) per 1,000 people per day. ? ^ ^ +++++ - - - producer: Browne AJ et al. (2021) ? ------- + + - producer: Browne AJ et al. + + description: |- + + The Global Research on Antimicrobial Resistance (GRAM) Project is a partnership between the University of Oxford and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, to provide rigorous quantitative estimates of antimicrobial resistance (AMR) burden; to increase global-, regional-, and country-level awareness of AMR; to boost surveillance efforts, particularly in low and middle income countries (LMICs); and, to promote the rational use of antimicrobials worldwide. + + title_snapshot: Antibiotic usage and consumption + + description_snapshot: |- + + For modeled estimates of total antibiotic consumption: IQVIA MIDASTM database, [European Center for Disease Control](https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net), World Health Organization, and published literature. - - licenses: ? - + + license: ? ++++ - - - name: Creative Commons BY 4.0 - - url: https://docs.google.com/document/d/1-RmthhS2EPMK_HIpnPctcXpB0n7ADSWnXa5Hb3PxNq4/edit?usp=sharing + + name: © 2024 Global Research on Antimicrobial Resistance + + url: https://www.ox.ac.uk/legal - - short_unit: '' - - processing_level: major - - attribution: HYDE (2023); Gapminder (2022); UN WPP (2024) - - Removed values: 114 / 3876 (2.94%) country year antibiotic_consumption__ddd_1_000_day Africa 2007 8.395011 Africa 2010 9.500336 Asia 2005 9.062757 Asia 2014 12.298692 Oceania 2014 20.982134 ~ Column lower_uncertainty_interval (changed metadata, changed data) - - description: Population by country and year. - - description_short: Population by country, available from 10,000 BCE to 2100, based on data and estimates from different sources. - - - producer: Browne AJ et al. (2021) ? ------- + + - producer: Browne AJ et al. + + description: |- + + The Global Research on Antimicrobial Resistance (GRAM) Project is a partnership between the University of Oxford and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, to provide rigorous quantitative estimates of antimicrobial resistance (AMR) burden; to increase global-, regional-, and country-level awareness of AMR; to boost surveillance efforts, particularly in low and middle income countries (LMICs); and, to promote the rational use of antimicrobials worldwide. + + title_snapshot: Antibiotic usage and consumption + + description_snapshot: |- + + For modeled estimates of total antibiotic consumption: IQVIA MIDASTM database, [European Center for Disease Control](https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net), World Health Organization, and published literature. - - licenses: ? - + + license: ? ++++ - - - name: Creative Commons BY 4.0 - - url: https://docs.google.com/document/d/1-RmthhS2EPMK_HIpnPctcXpB0n7ADSWnXa5Hb3PxNq4/edit?usp=sharing + + name: © 2024 Global Research on Antimicrobial Resistance + + url: https://www.ox.ac.uk/legal - - short_unit: '' - - display: - - numDecimalPlaces: 0 - - processing_level: major - - attribution: HYDE (2023); Gapminder (2022); UN WPP (2024) - - Removed values: 114 / 3876 (2.94%) country year lower_uncertainty_interval Africa 2007 6.762672 Africa 2010 7.718959 Asia 2005 8.511994 Asia 2014 11.61167 Oceania 2014 20.256237 ~ Column upper_uncertainty_interval (changed metadata, changed data) - - description: Population by country and year. - - description_short: Population by country, available from 10,000 BCE to 2100, based on data and estimates from different sources. - - - producer: Browne AJ et al. (2021) ? ------- + + - producer: Browne AJ et al. + + description: |- + + The Global Research on Antimicrobial Resistance (GRAM) Project is a partnership between the University of Oxford and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, to provide rigorous quantitative estimates of antimicrobial resistance (AMR) burden; to increase global-, regional-, and country-level awareness of AMR; to boost surveillance efforts, particularly in low and middle income countries (LMICs); and, to promote the rational use of antimicrobials worldwide. + + title_snapshot: Antibiotic usage and consumption + + description_snapshot: |- + + For modeled estimates of total antibiotic consumption: IQVIA MIDASTM database, [European Center for Disease Control](https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net), World Health Organization, and published literature. - - licenses: ? - + + license: ? ++++ - - - name: Creative Commons BY 4.0 - - url: https://docs.google.com/document/d/1-RmthhS2EPMK_HIpnPctcXpB0n7ADSWnXa5Hb3PxNq4/edit?usp=sharing + + name: © 2024 Global Research on Antimicrobial Resistance + + url: https://www.ox.ac.uk/legal - - short_unit: '' - - display: - - numDecimalPlaces: 0 - - processing_level: major - - attribution: HYDE (2023); Gapminder (2022); UN WPP (2024) - - Removed values: 114 / 3876 (2.94%) country year upper_uncertainty_interval Africa 2007 10.357027 Africa 2010 11.702678 Asia 2005 9.724019 Asia 2014 13.079142 Oceania 2014 21.882711 = Dataset garden/antibiotics/2024-10-09/gram_level = Table gram_level ~ Dim country - - Removed values: 912 / 31160 (2.93%) year atc_level_3_class country 2018 J01A-Tetracyclines Africa 2018 J01B-Amphenicols Africa 2012 J01E-Sulfonamides and trimethoprim Asia 2010 J01G-Aminoglycosides Oceania 2017 J01D-Other beta-lactams Oceania ~ Dim year - - Removed values: 912 / 31160 (2.93%) country atc_level_3_class year Africa J01A-Tetracyclines 2018 Africa J01B-Amphenicols 2018 Asia J01E-Sulfonamides and trimethoprim 2012 Oceania J01G-Aminoglycosides 2010 Oceania J01D-Other beta-lactams 2017 ~ Dim atc_level_3_class - - Removed values: 912 / 31160 (2.93%) country year atc_level_3_class Africa 2018 J01A-Tetracyclines Africa 2018 J01B-Amphenicols Asia 2012 J01E-Sulfonamides and trimethoprim Oceania 2010 J01G-Aminoglycosides Oceania 2017 J01D-Other beta-lactams ~ Column antibiotic_consumption__ddd_1_000_day (changed metadata, changed data) - - description: Population by country and year. - - description_short: Estimated [Defined Daily Doses](#dod:defined-daily-doses) of << atc_level_3_class >> per 1,000 people. ? --------------------------- ^ ^ + + description_short: Estimated defined daily doses (DDD) of << atc_level_3_class >> per 1,000 people. ? ^ ^ +++++ - - - producer: Browne AJ et al. (2021) ? ------- + + - producer: Browne AJ et al. + + description: |- + + The Global Research on Antimicrobial Resistance (GRAM) Project is a partnership between the University of Oxford and the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, to provide rigorous quantitative estimates of antimicrobial resistance (AMR) burden; to increase global-, regional-, and country-level awareness of AMR; to boost surveillance efforts, particularly in low and middle income countries (LMICs); and, to promote the rational use of antimicrobials worldwide. + + title_snapshot: Antibiotic usage and consumption + + description_snapshot: |- + + For modeled estimates of total antibiotic consumption: IQVIA MIDASTM database, [European Center for Disease Control](https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net), World Health Organization, and published literature. - - licenses: ? - + + license: ? ++++ - - - name: Creative Commons BY 4.0 - - url: https://docs.google.com/document/d/1-RmthhS2EPMK_HIpnPctcXpB0n7ADSWnXa5Hb3PxNq4/edit?usp=sharing + + name: © 2024 Global Research on Antimicrobial Resistance + + url: https://www.ox.ac.uk/legal - - short_unit: '' - - processing_level: major - - attribution: HYDE (2023); Gapminder (2022); UN WPP (2024) - - Removed values: 912 / 31160 (2.93%) country year atc_level_3_class antibiotic_consumption__ddd_1_000_day Africa 2018 J01A-Tetracyclines 1.393283 Africa 2018 J01B-Amphenicols 0.039202 Asia 2012 J01E-Sulfonamides and trimethoprim 0.705565 Oceania 2010 J01G-Aminoglycosides 0.117554 Oceania 2017 J01D-Other beta-lactams 3.285561 ~ Dataset garden/antibiotics/2024-10-18/who_glass - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) ? + ~ Table who_glass (changed metadata) - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) ? + ~ Column astresult (changed metadata) + + title: Share of bacterial confirmed <> infections with antibiotic susceptibility test results - - title: |- - - Share of samples tested and confirmed to be <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections with antibiotic susceptibility test results - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + + + title_public: Share of bacterial confirmed <> infections with antibiotic susceptibility test results - - title_public: |- - - Share of samples tested and confirmed to be <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections with antibiotic susceptibility test results ~ Column bcispermillion (changed metadata) + + title: Bacteriologically confirmed <> infections per million population - - title: |- - - Samples tested and confirmed to be <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections per million population - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + - - name: << syndrome.capitalize() >> ? -- + + name: << syndrome.capitalize >> + + title_public: Bacteriologically confirmed <> infections per million population - - title_public: |- - - Samples tested and confirmed to be <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections per million population ~ Column isolspermillion (changed metadata) + + title: Isolates of <> infections per million population - - title: |- - - Samples tested and confirmed to be <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections with antibiotic susceptibility test results per million population - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + - - unit: confirmed infections per million + + unit: isolates per million - - name: << syndrome.capitalize() >> ? -- + + name: << syndrome.capitalize >> + + title_public: Isolates of <> infections per million population - - title_public: |- - - Samples tested and confirmed to be <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections with antibiotic susceptibility test results per million population ~ Column totalspecimenisolates (changed metadata) + + title: Total specimen isolates of <> infections - - title: |- - - Total specimens collected of <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + - - unit: specimens + + unit: isolates - - name: << syndrome.capitalize() >> ? -- + + name: << syndrome.capitalize >> + + title_public: Total specimen isolates of <> infections - - title_public: |- - - Total specimen collected of <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections ~ Column totalspecimenisolateswithast (changed metadata) + + title: Bacterially confirmed <> infections per million population with antibiotic susceptibility test results - - title: |- - - Samples tested and confirmed to be <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections with antibiotic susceptibility test results - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + - - unit: confirmed infections + + unit: confirmed infections per million ? ++++++++++++ - - name: << syndrome.capitalize() >> ? -- + + name: << syndrome.capitalize >> - - title_public: |- - - Samples tested and confirmed to be <%- if syndrome == "BLOOD" %> bloodstream <%- elif syndrome == "STOOL" %> gastrointestinal <%- elif syndrome == "URINE" %> urinary tract <%- elif syndrome == "UROGENITAL" %> gonorrohea <% endif %> infections with antibiotic susceptibility test results + + title_public: Bacterially confirmed <> infections per million population with antibiotic susceptibility + + test results ~ Dataset garden/antibiotics/2024-10-18/who_glass_by_antibiotic - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) - by antibiotic ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) - by antibiotic ? + ~ Table antibiotic_table (changed metadata) - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) - by antibiotic ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) - by antibiotic ? + ~ Column bcis_with_ast_per_million (changed metadata) - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) - by antibiotic ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) - by antibiotic ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + ~ Column share_bcis_with_ast (changed metadata) - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) - by antibiotic ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) - by antibiotic ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + ~ Column total_bcis_with_ast (changed metadata) - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) - by antibiotic ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) - by antibiotic ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + ~ Table bci_table (changed metadata) - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) - by antibiotic ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) - by antibiotic ? + ~ Column bcis_per_million (changed metadata) - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) - by antibiotic ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) - by antibiotic ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + ~ Column total_bcis (changed metadata) - - title: Global Antimicrobial Resistance and Use Surveillance System (GLASS) - by antibiotic ? - + + title: Global Antimicrobial Resitsance and Use Surveillance System (GLASS) - by antibiotic ? + - - citation_full: Global AMR data - Global Antimicrobial Resistance and Use Surveillance System (GLASS), World Health Organization ? - + + citation_full: Global AMR data - Global Antimicrobial Resitsance and Use Surveillance System (GLASS), World Health Organization ? + = Dataset garden/antibiotics/2024-10-25/esvac_sales_corrected = Table esvac_sales_corrected ⚠ Error: Index must be unique. = Dataset garden/artificial_intelligence/2023-06-14/ai_deepfakes = Table ai_deepfakes ⚠ Error: Index must be unique. ⚠ Error: Index must be unique. = Dataset garden/artificial_intelligence/2024-02-15/epoch_llms = Table epoch_llms ~ Column dataset_size__tokens (changed metadata) - - Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^ ^^^ + + Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^^^^ ^^^^^^ - - url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ - - url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ ~ Column mmlu_avg (changed metadata) - - Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^ ^^^ + + Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^^^^ ^^^^^^ - - url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ - - url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ ~ Column model_size__parameters (changed metadata) - - Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^ ^^^ + + Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^^^^ ^^^^^^ - - url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ - - url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ ~ Column organisation (changed metadata) - - Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^ ^^^ + + Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^^^^ ^^^^^^ - - url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ - - url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ ~ Column training_computation_petaflop (changed metadata) - - Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epoch.ai. Retrieved from: 'https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^ ^^^ + + Owen, David. (2023). Large Language Model performance and compute, Epoch (2023) [Data set]. In Extrapolating performance in language modeling benchmarks. Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks' . ? ^^^^^^^ ^^^^^^ - - url_main: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url_main: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ - - url: https://epoch.ai/blog/extrapolating-performance-in-language-modelling-benchmarks ? - + + url: https://epochai.org/blog/extrapolating-performance-in-language-modelling-benchmarks ? ++++ = Dataset garden/artificial_intelligence/2024-06-06/epoch_compute_cost = Table epoch_compute_cost ~ Column cost__inflation_adjusted (changed metadata) - - url_main: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url_main: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ ~ Column domain (changed metadata) - - url_main: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url_main: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ ~ Column publication_date (changed metadata) - - url_main: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url_main: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ = Dataset garden/artificial_intelligence/2024-11-03/epoch = Table epoch ~ Column domain (changed metadata) - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ ~ Column organization_categorization (changed metadata) - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ ~ Column parameters (changed metadata) - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ ~ Column publication_date (changed metadata) - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ ~ Column training_computation_petaflop (changed metadata) - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ ~ Column training_dataset_size__datapoints (changed metadata) - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ = Dataset garden/artificial_intelligence/2024-11-03/epoch_aggregates_affiliation = Table epoch_aggregates_affiliation ~ Column cumulative_count (changed metadata) - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ ~ Column yearly_count (changed metadata) - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ = Dataset garden/artificial_intelligence/2024-11-03/epoch_aggregates_domain = Table epoch_aggregates_domain ~ Column cumulative_count (changed metadata) - - Describes the specific area, application, or field in which an AI system is designed to operate. An AI system can operate in more than one domain, thus contributing to the count for multiple domains. The 2024 data is incomplete and was last updated 03 November 2024. ? ^^ + + Describes the specific area, application, or field in which an AI system is designed to operate. An AI system can operate in more than one domain, thus contributing to the count for multiple domains. The 2024 data is incomplete and was last updated 6 November 2024. ? ^ - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ ~ Column yearly_count (changed metadata) - - Describes the specific area, application, or field in which an AI system is designed to operate. An AI system can operate in more than one domain, thus contributing to the count for multiple domains. The 2024 data is incomplete and was last updated 03 November 2024. ? ^^ + + Describes the specific area, application, or field in which an AI system is designed to operate. An AI system can operate in more than one domain, thus contributing to the count for multiple domains. The 2024 data is incomplete and was last updated 6 November 2024. ? ^ - - Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epoch.ai/data/epochdb/visualization’ ? - + + Epoch AI, ‘Parameter, Compute and Data Trends in Machine Learning’. Published online at epochai.org. Retrieved from: ‘https://epochai.org/data/epochdb/visualization’ ? ++++ - - url_main: https://epoch.ai/mlinputs/visualization ? - + + url_main: https://epochai.org/mlinputs/visualization ? ++++ - - url_download: https://epoch.ai/data/epochdb/notable_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/notable_ai_models.csv ? ++++ = Dataset garden/artificial_intelligence/2024-11-03/epoch_compute_intensive = Table epoch_compute_intensive ~ Column domain (changed metadata) - - Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models' ? ^^^ + + Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models' ? ^^^^^^ - - url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models ? - + + url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models ? ++++ - - url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv ? ++++ - - url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ ~ Column parameters (changed metadata) - - Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models' ? ^^^ + + Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models' ? ^^^^^^ - - url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models ? - + + url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models ? ++++ - - url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv ? ++++ - - url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ ~ Column publication_date (changed metadata) - - Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models' ? ^^^ + + Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models' ? ^^^^^^ - - url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models ? - + + url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models ? ++++ - - url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv ? ++++ - - url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ ~ Column training_computation_petaflop (changed metadata) - - Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models' ? ^^^ + + Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models' ? ^^^^^^ - - url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models ? - + + url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models ? ++++ - - url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv ? ++++ - - url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ ~ Column training_dataset_size__datapoints (changed metadata) - - Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models' ? ^^^ + + Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models' ? ^^^^^^ - - url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models ? - + + url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models ? ++++ - - url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv ? ++++ - - url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ = Dataset garden/artificial_intelligence/2024-11-03/epoch_compute_intensive_countries = Table epoch_compute_intensive_countries ~ Column cumulative_count (changed metadata) - - Refers to the location of the primary organization with which the authors of a large-scale AI systems are affiliated. The 2024 data is incomplete and was last updated 03 November 2024. ? ^^ + + Refers to the location of the primary organization with which the authors of a large-scale AI systems are affiliated. The 2024 data is incomplete and was last updated 6 November 2024. ? ^ - - Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models' ? ^^^ + + Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models' ? ^^^^^^ - - url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models ? - + + url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models ? ++++ - - url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv ? ++++ - - url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ ~ Column yearly_count (changed metadata) - - Refers to the location of the primary organization with which the authors of a large-scale AI systems are affiliated. The 2024 data is incomplete and was last updated 03 November 2024. ? ^^ + + Refers to the location of the primary organization with which the authors of a large-scale AI systems are affiliated. The 2024 data is incomplete and was last updated 6 November 2024. ? ^ - - Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epoch.ai/blog/tracking-compute-intensive-ai-models' ? ^^^ + + Robi Rahman, David Owen and Josh You (2024), "Tracking Compute-Intensive AI Models". Published online at epochai.org. Retrieved from: 'https://epochai.org/blog/tracking-compute-intensive-ai-models' ? ^^^^^^ - - url_main: https://epoch.ai/blog/tracking-compute-intensive-ai-models ? - + + url_main: https://epochai.org/blog/tracking-compute-intensive-ai-models ? ++++ - - url_download: https://epoch.ai/data/epochdb/large_scale_ai_models.csv ? - + + url_download: https://epochai.org/data/epochdb/large_scale_ai_models.csv ? ++++ - - url: https://epoch.ai/blog/how-much-does-it-cost-to-train-frontier-ai-models ? - + + url: https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models ? ++++ = Dataset garden/artificial_intelligence/2024-11-03/epoch_compute_intensive_domain = Table epoch_compute_intensive_domain ~ Column cumulative_count (changed metadata) - - Describes the specific area, application, or field in which a large-scale AI model is designed to operate. The 2024 data is incomplete and was last updated 03 November 2024. ? ^^ + + Describes the specific area, application, or field in which a large-scale AI model is designed to operate. The 2024 data is incomplete and was last updated 6 November 2024. ? ...diff too long, truncated... ``` Automatically updated datasets matching _weekly_wildfires|excess_mortality|covid|fluid|flunet|country_profile|garden/ihme_gbd/2019/gbd_risk_ are not included

Edited: 2024-11-25 17:11:25 UTC Execution time: 4.70 seconds