pacman100 / LLM-Workshop

LLM Workshop by Sourab Mangrulkar
Apache License 2.0
344 stars 122 forks source link

train.py: error: ambiguous option: --split could match --splits, --split_batches #32

Closed arjun-mavonic closed 6 months ago

arjun-mavonic commented 6 months ago

I uploaded my private github repo as data set to private hugging face dataset. Below is the error I receive when I try to train using PEFT method

2024-05-05 18:43:36.206142: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2024-05-05 18:43:36.206194: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2024-05-05 18:43:36.207621: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2024-05-05 18:43:36.214881: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2024-05-05 18:43:37.321192: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT usage: train.py [-h] --model_name_or_path MODEL_NAME_OR_PATH [--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT] [--lora_r LORA_R] [--lora_target_modules LORA_TARGET_MODULES] [--use_nested_quant [USE_NESTED_QUANT]] [--bnb_4bit_compute_dtype BNB_4BIT_COMPUTE_DTYPE] [--bnb_4bit_quant_type BNB_4BIT_QUANT_TYPE] [--use_flash_attn [USE_FLASH_ATTN]] [--use_peft_lora [USE_PEFT_LORA]] [--use_8bit_qunatization [USE_8BIT_QUNATIZATION]] [--use_4bit_quantization [USE_4BIT_QUANTIZATION]] [--use_reentrant [USE_REENTRANT]] [--use_unsloth [USE_UNSLOTH]] [--use_loftq [USE_LOFTQ]] [--use_loftq_callback [USE_LOFTQ_CALLBACK]] [--dataset_name DATASET_NAME] [--dataset_text_field DATASET_TEXT_FIELD] [--max_seq_length MAX_SEQ_LENGTH] [--test_size TEST_SIZE] [--fim_rate FIM_RATE] [--fim_spm_rate FIM_SPM_RATE] [--splits SPLITS] --output_dir OUTPUT_DIR [--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]] [--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]] [--do_predict [DO_PREDICT]] [--eval_strategy {no,steps,epoch}] [--prediction_loss_only [PREDICTION_LOSS_ONLY]] [--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE] [--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE] [--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE] [--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE] [--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS] [--eval_accumulation_steps EVAL_ACCUMULATION_STEPS] [--eval_delay EVAL_DELAY] [--learning_rate LEARNING_RATE] [--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1] [--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON] [--max_grad_norm MAX_GRAD_NORM] [--num_train_epochs NUM_TRAIN_EPOCHS] [--max_steps MAX_STEPS] [--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}] [--lr_scheduler_kwargs LR_SCHEDULER_KWARGS] [--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS] [--log_level {detail,debug,info,warning,error,critical,passive}] [--log_level_replica {detail,debug,info,warning,error,critical,passive}] [--log_on_each_node [LOG_ON_EACH_NODE]] [--no_log_on_each_node] [--logging_dir LOGGING_DIR] [--logging_strategy {no,steps,epoch}] [--logging_first_step [LOGGING_FIRST_STEP]] [--logging_steps LOGGING_STEPS] [--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]] [--no_logging_nan_inf_filter] [--save_strategy {no,steps,epoch}] [--save_steps SAVE_STEPS] [--save_total_limit SAVE_TOTAL_LIMIT] [--save_safetensors [SAVE_SAFETENSORS]] [--no_save_safetensors] [--save_on_each_node [SAVE_ON_EACH_NODE]] [--save_only_model [SAVE_ONLY_MODEL]] [--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]] [--no_cuda [NO_CUDA]] [--use_cpu [USE_CPU]] [--use_mps_device [USE_MPS_DEVICE]] [--seed SEED] [--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]] [--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]] [--fp16_opt_level FP16_OPT_LEVEL] [--half_precision_backend {auto,apex,cpu_amp}] [--bf16_full_eval [BF16_FULL_EVAL]] [--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32] [--local_rank LOCAL_RANK] [--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}] [--tpu_num_cores TPU_NUM_CORES] [--tpu_metrics_debug [TPU_METRICS_DEBUG]] [--debug DEBUG [DEBUG ...]] [--dataloader_drop_last [DATALOADER_DROP_LAST]] [--eval_steps EVAL_STEPS] [--dataloader_num_workers DATALOADER_NUM_WORKERS] [--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR] [--past_index PAST_INDEX] [--run_name RUN_NAME] [--disable_tqdm DISABLE_TQDM] [--remove_unused_columns [REMOVE_UNUSED_COLUMNS]] [--no_remove_unused_columns] [--label_names LABEL_NAMES [LABEL_NAMES ...]] [--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]] [--metric_for_best_model METRIC_FOR_BEST_MODEL] [--greater_is_better GREATER_IS_BETTER] [--ignore_data_skip [IGNORE_DATA_SKIP]] [--fsdp FSDP] [--fsdp_min_num_params FSDP_MIN_NUM_PARAMS] [--fsdp_config FSDP_CONFIG] [--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP] [--accelerator_config ACCELERATOR_CONFIG] [--deepspeed DEEPSPEED] [--label_smoothing_factor LABEL_SMOOTHING_FACTOR] [--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise}] [--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]] [--group_by_length [GROUP_BY_LENGTH]] [--length_column_name LENGTH_COLUMN_NAME] [--report_to REPORT_TO] [--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS] [--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB] [--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS] [--dataloader_pin_memory [DATALOADER_PIN_MEMORY]] [--no_dataloader_pin_memory] [--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]] [--skip_memory_metrics [SKIP_MEMORY_METRICS]] [--no_skip_memory_metrics] [--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]] [--push_to_hub [PUSH_TO_HUB]] [--resume_from_checkpoint RESUME_FROM_CHECKPOINT] [--hub_model_id HUB_MODEL_ID] [--hub_strategy {end,every_save,checkpoint,all_checkpoints}] [--hub_token HUB_TOKEN] [--hub_private_repo [HUB_PRIVATE_REPO]] [--hub_always_push [HUB_ALWAYS_PUSH]] [--gradient_checkpointing [GRADIENT_CHECKPOINTING]] [--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS] [--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]] [--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]] [--no_eval_do_concat_batches] [--fp16_backend {auto,apex,cpu_amp}] [--evaluation_strategy {no,steps,epoch}] [--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID] [--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION] [--push_to_hub_token PUSH_TO_HUB_TOKEN] [--mp_parameters MP_PARAMETERS] [--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]] [--full_determinism [FULL_DETERMINISM]] [--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE] [--ddp_timeout DDP_TIMEOUT] [--torch_compile [TORCH_COMPILE]] [--torch_compile_backend TORCH_COMPILE_BACKEND] [--torch_compile_mode TORCH_COMPILE_MODE] [--dispatch_batches DISPATCH_BATCHES] [--split_batches SPLIT_BATCHES] [--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]] [--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]] [--neftune_noise_alpha NEFTUNE_NOISE_ALPHA] [--optim_target_modules OPTIM_TARGET_MODULES] train.py: error: ambiguous option: --split could match --splits, --split_batches

arjun-mavonic commented 6 months ago

I fixed it by going through the train.py code. We are supposed to use --splits instead of --split