"k8s.io/apimachinery/pkg/api/resource"
metainternalversion "k8s.io/apimachinery/pkg/apis/meta/internalversion"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/types"
"k8s.io/apimachinery/pkg/util/intstr"
)
const (
// NamespaceDefault means the object is in the default namespace which is applied when not specified by clients
NamespaceDefault = "default"
// NamespaceAll is the default argument to specify on a context when you want to list or filter resources across all namespaces
NamespaceAll = ""
// NamespaceNone is the argument for a context when there is no namespace.
NamespaceNone = ""
// NamespaceSystem is the system namespace where we place system components.
NamespaceSystem = "kube-system"
// NamespacePublic is the namespace where we place public info (ConfigMaps)
NamespacePublic = "kube-public"
// NamespaceNodeLease is the namespace where we place node lease objects (used for node heartbeats)
NamespaceNodeLease = "kube-node-lease"
// TerminationMessagePathDefault means the default path to capture the application termination message running in a container
TerminationMessagePathDefault = "/dev/termination-log"
)
// Volume represents a named volume in a pod that may be accessed by any containers in the pod.
type Volume struct {
// Required: This must be a DNS_LABEL. Each volume in a pod must have
// a unique name.
Name string
// The VolumeSource represents the location and type of a volume to mount.
// This is optional for now. If not specified, the Volume is implied to be an EmptyDir.
// This implied behavior is deprecated and will be removed in a future version.
// +optional
VolumeSource
}
// VolumeSource represents the source location of a volume to mount.
// Only one of its members may be specified.
type VolumeSource struct {
// HostPath represents file or directory on the host machine that is
// directly exposed to the container. This is generally used for system
// agents or other privileged things that are allowed to see the host
// machine. Most containers will NOT need this.
// ---
// TODO(jonesdl) We need to restrict who can use host directory mounts and who can/can not
// mount host directories as read/write.
// +optional
HostPath *HostPathVolumeSource
// EmptyDir represents a temporary directory that shares a pod's lifetime.
// +optional
EmptyDir *EmptyDirVolumeSource
// GCEPersistentDisk represents a GCE Disk resource that is attached to a
// kubelet's host machine and then exposed to the pod.
// +optional
GCEPersistentDisk *GCEPersistentDiskVolumeSource
// AWSElasticBlockStore represents an AWS EBS disk that is attached to a
// kubelet's host machine and then exposed to the pod.
// +optional
AWSElasticBlockStore *AWSElasticBlockStoreVolumeSource
// GitRepo represents a git repository at a particular revision.
// DEPRECATED: GitRepo is deprecated. To provision a container with a git repo, mount an
// EmptyDir into an InitContainer that clones the repo using git, then mount the EmptyDir
// into the Pod's container.
// +optional
GitRepo *GitRepoVolumeSource
// Secret represents a secret that should populate this volume.
// +optional
Secret *SecretVolumeSource
// NFS represents an NFS mount on the host that shares a pod's lifetime
// +optional
NFS *NFSVolumeSource
// ISCSIVolumeSource represents an ISCSI Disk resource that is attached to a
// kubelet's host machine and then exposed to the pod.
// +optional
ISCSI *ISCSIVolumeSource
// Glusterfs represents a Glusterfs mount on the host that shares a pod's lifetime
// +optional
Glusterfs *GlusterfsVolumeSource
// PersistentVolumeClaimVolumeSource represents a reference to a PersistentVolumeClaim in the same namespace
// +optional
PersistentVolumeClaim *PersistentVolumeClaimVolumeSource
// RBD represents a Rados Block Device mount on the host that shares a pod's lifetime
// +optional
RBD *RBDVolumeSource
// Quobyte represents a Quobyte mount on the host that shares a pod's lifetime
// +optional
Quobyte *QuobyteVolumeSource
// FlexVolume represents a generic volume resource that is
// provisioned/attached using an exec based plugin.
// +optional
FlexVolume *FlexVolumeSource
// Cinder represents a cinder volume attached and mounted on kubelets host machine.
// +optional
Cinder *CinderVolumeSource
// CephFS represents a Cephfs mount on the host that shares a pod's lifetime
// +optional
CephFS *CephFSVolumeSource
// Flocker represents a Flocker volume attached to a kubelet's host machine. This depends on the Flocker control service being running
// +optional
Flocker *FlockerVolumeSource
// DownwardAPI represents metadata about the pod that should populate this volume
// +optional
DownwardAPI *DownwardAPIVolumeSource
// FC represents a Fibre Channel resource that is attached to a kubelet's host machine and then exposed to the pod.
// +optional
FC *FCVolumeSource
// AzureFile represents an Azure File Service mount on the host and bind mount to the pod.
// +optional
AzureFile *AzureFileVolumeSource
// ConfigMap represents a configMap that should populate this volume
// +optional
ConfigMap *ConfigMapVolumeSource
// VsphereVolume represents a vSphere volume attached and mounted on kubelets host machine
// +optional
VsphereVolume *VsphereVirtualDiskVolumeSource
// AzureDisk represents an Azure Data Disk mount on the host and bind mount to the pod.
// +optional
AzureDisk *AzureDiskVolumeSource
// PhotonPersistentDisk represents a Photon Controller persistent disk attached and mounted on kubelets host machine
PhotonPersistentDisk *PhotonPersistentDiskVolumeSource
// Items for all in one resources secrets, configmaps, and downward API
Projected *ProjectedVolumeSource
// PortworxVolume represents a portworx volume attached and mounted on kubelets host machine
// +optional
PortworxVolume *PortworxVolumeSource
// ScaleIO represents a ScaleIO persistent volume attached and mounted on Kubernetes nodes.
// +optional
ScaleIO *ScaleIOVolumeSource
// StorageOS represents a StorageOS volume that is attached to the kubelet's host machine and mounted into the pod
// +optional
StorageOS *StorageOSVolumeSource
// CSI (Container Storage Interface) represents ephemeral storage that is handled by certain external CSI drivers (Beta feature).
// +optional
CSI *CSIVolumeSource
// Ephemeral represents a volume that is handled by a cluster storage driver (Alpha feature).
// The volume's lifecycle is tied to the pod that defines it - it will be created before the pod starts,
// and deleted when the pod is removed.
//
// Use this if:
// a) the volume is only needed while the pod runs,
// b) features of normal volumes like restoring from snapshot or capacity
// tracking are needed,
// c) the storage driver is specified through a storage class, and
// d) the storage driver supports dynamic volume provisioning through
// a PersistentVolumeClaim (see EphemeralVolumeSource for more
// information on the connection between this volume type
// and PersistentVolumeClaim).
//
// Use PersistentVolumeClaim or one of the vendor-specific
// APIs for volumes that persist for longer than the lifecycle
// of an individual pod.
//
// Use CSI for light-weight local ephemeral volumes if the CSI driver is meant to
// be used that way - see the documentation of the driver for
// more information.
//
// A pod can use both types of ephemeral volumes and
// persistent volumes at the same time.
//
// +optional
Ephemeral *EphemeralVolumeSource
}
// PersistentVolumeSource is similar to VolumeSource but meant for the administrator who creates PVs.
// Exactly one of its members must be set.
type PersistentVolumeSource struct {
// GCEPersistentDisk represents a GCE Disk resource that is attached to a
// kubelet's host machine and then exposed to the pod.
// +optional
GCEPersistentDisk *GCEPersistentDiskVolumeSource
// AWSElasticBlockStore represents an AWS EBS disk that is attached to a
// kubelet's host machine and then exposed to the pod.
// +optional
AWSElasticBlockStore *AWSElasticBlockStoreVolumeSource
// HostPath represents a directory on the host.
// Provisioned by a developer or tester.
// This is useful for single-node development and testing only!
// On-host storage is not supported in any way and WILL NOT WORK in a multi-node cluster.
// +optional
HostPath *HostPathVolumeSource
// Glusterfs represents a Glusterfs volume that is attached to a host and exposed to the pod
// +optional
Glusterfs *GlusterfsPersistentVolumeSource
// NFS represents an NFS mount on the host that shares a pod's lifetime
// +optional
NFS *NFSVolumeSource
// RBD represents a Rados Block Device mount on the host that shares a pod's lifetime
// +optional
RBD *RBDPersistentVolumeSource
// Quobyte represents a Quobyte mount on the host that shares a pod's lifetime
// +optional
Quobyte *QuobyteVolumeSource
// ISCSIPersistentVolumeSource represents an ISCSI resource that is attached to a
// kubelet's host machine and then exposed to the pod.
// +optional
ISCSI *ISCSIPersistentVolumeSource
// FlexVolume represents a generic volume resource that is
// provisioned/attached using an exec based plugin.
// +optional
FlexVolume *FlexPersistentVolumeSource
// Cinder represents a cinder volume attached and mounted on kubelets host machine.
// +optional
Cinder *CinderPersistentVolumeSource
// CephFS represents a Ceph FS mount on the host that shares a pod's lifetime
// +optional
CephFS *CephFSPersistentVolumeSource
// FC represents a Fibre Channel resource that is attached to a kubelet's host machine and then exposed to the pod.
// +optional
FC *FCVolumeSource
// Flocker represents a Flocker volume attached to a kubelet's host machine. This depends on the Flocker control service being running
// +optional
Flocker *FlockerVolumeSource
// AzureFile represents an Azure File Service mount on the host and bind mount to the pod.
// +optional
AzureFile *AzureFilePersistentVolumeSource
// VsphereVolume represents a vSphere volume attached and mounted on kubelets host machine
// +optional
VsphereVolume *VsphereVirtualDiskVolumeSource
// AzureDisk represents an Azure Data Disk mount on the host and bind mount to the pod.
// +optional
AzureDisk *AzureDiskVolumeSource
// PhotonPersistentDisk represents a Photon Controller persistent disk attached and mounted on kubelets host machine
PhotonPersistentDisk *PhotonPersistentDiskVolumeSource
// PortworxVolume represents a portworx volume attached and mounted on kubelets host machine
// +optional
PortworxVolume *PortworxVolumeSource
// ScaleIO represents a ScaleIO persistent volume attached and mounted on Kubernetes nodes.
// +optional
ScaleIO *ScaleIOPersistentVolumeSource
// Local represents directly-attached storage with node affinity
// +optional
Local *LocalVolumeSource
// StorageOS represents a StorageOS volume that is attached to the kubelet's host machine and mounted into the pod
// More info: https://examples.k8s.io/volumes/storageos/README.md
// +optional
StorageOS *StorageOSPersistentVolumeSource
// CSI (Container Storage Interface) represents storage that is handled by an external CSI driver.
// +optional
CSI *CSIPersistentVolumeSource
}
// PersistentVolumeClaimVolumeSource represents a reference to a PersistentVolumeClaim in the same namespace
type PersistentVolumeClaimVolumeSource struct {
// ClaimName is the name of a PersistentVolumeClaim in the same namespace as the pod using this volume
ClaimName string
// Optional: Defaults to false (read/write). ReadOnly here
// will force the ReadOnly setting in VolumeMounts
// +optional
ReadOnly bool
}
const (
// BetaStorageClassAnnotation represents the beta/previous StorageClass annotation.
// It's deprecated and will be removed in a future release. (#51440)
BetaStorageClassAnnotation = "volume.beta.kubernetes.io/storage-class"
// MountOptionAnnotation defines mount option annotation used in PVs
MountOptionAnnotation = "volume.beta.kubernetes.io/mount-options"
)
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PersistentVolume struct captures the details of the implementation of PV storage
type PersistentVolume struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
//Spec defines a persistent volume owned by the cluster
// +optional
Spec PersistentVolumeSpec
// Status represents the current information about persistent volume.
// +optional
Status PersistentVolumeStatus
}
// PersistentVolumeSpec has most of the details required to define a persistent volume
type PersistentVolumeSpec struct {
// Resources represents the actual resources of the volume
Capacity ResourceList
// Source represents the location and type of a volume to mount.
PersistentVolumeSource
// AccessModes contains all ways the volume can be mounted
// +optional
AccessModes []PersistentVolumeAccessMode
// ClaimRef is part of a bi-directional binding between PersistentVolume and PersistentVolumeClaim.
// ClaimRef is expected to be non-nil when bound.
// claim.VolumeName is the authoritative bind between PV and PVC.
// When set to non-nil value, PVC.Spec.Selector of the referenced PVC is
// ignored, i.e. labels of this PV do not need to match PVC selector.
// +optional
ClaimRef *ObjectReference
// Optional: what happens to a persistent volume when released from its claim.
// +optional
PersistentVolumeReclaimPolicy PersistentVolumeReclaimPolicy
// Name of StorageClass to which this persistent volume belongs. Empty value
// means that this volume does not belong to any StorageClass.
// +optional
StorageClassName string
// A list of mount options, e.g. ["ro", "soft"]. Not validated - mount will
// simply fail if one is invalid.
// +optional
MountOptions []string
// volumeMode defines if a volume is intended to be used with a formatted filesystem
// or to remain in raw block state. Value of Filesystem is implied when not included in spec.
// +optional
VolumeMode *PersistentVolumeMode
// NodeAffinity defines constraints that limit what nodes this volume can be accessed from.
// This field influences the scheduling of pods that use this volume.
// +optional
NodeAffinity *VolumeNodeAffinity
}
// VolumeNodeAffinity defines constraints that limit what nodes this volume can be accessed from.
type VolumeNodeAffinity struct {
// Required specifies hard node constraints that must be met.
Required *NodeSelector
}
// PersistentVolumeReclaimPolicy describes a policy for end-of-life maintenance of persistent volumes
type PersistentVolumeReclaimPolicy string
const (
// PersistentVolumeReclaimRecycle means the volume will be recycled back into the pool of unbound persistent volumes on release from its claim.
// The volume plugin must support Recycling.
// DEPRECATED: The PersistentVolumeReclaimRecycle called Recycle is being deprecated. See announcement here: https://groups.google.com/forum/#!topic/kubernetes-dev/uexugCza84I
PersistentVolumeReclaimRecycle PersistentVolumeReclaimPolicy = "Recycle"
// PersistentVolumeReclaimDelete means the volume will be deleted from Kubernetes on release from its claim.
// The volume plugin must support Deletion.
PersistentVolumeReclaimDelete PersistentVolumeReclaimPolicy = "Delete"
// PersistentVolumeReclaimRetain means the volume will be left in its current phase (Released) for manual reclamation by the administrator.
// The default policy is Retain.
PersistentVolumeReclaimRetain PersistentVolumeReclaimPolicy = "Retain"
)
// PersistentVolumeMode describes how a volume is intended to be consumed, either Block or Filesystem.
type PersistentVolumeMode string
const (
// PersistentVolumeBlock means the volume will not be formatted with a filesystem and will remain a raw block device.
PersistentVolumeBlock PersistentVolumeMode = "Block"
// PersistentVolumeFilesystem means the volume will be or is formatted with a filesystem.
PersistentVolumeFilesystem PersistentVolumeMode = "Filesystem"
)
// PersistentVolumeStatus represents the status of PV storage
type PersistentVolumeStatus struct {
// Phase indicates if a volume is available, bound to a claim, or released by a claim
// +optional
Phase PersistentVolumePhase
// A human-readable message indicating details about why the volume is in this state.
// +optional
Message string
// Reason is a brief CamelCase string that describes any failure and is meant for machine parsing and tidy display in the CLI
// +optional
Reason string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PersistentVolumeList represents a list of PVs
type PersistentVolumeList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []PersistentVolume
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PersistentVolumeClaim is a user's request for and claim to a persistent volume
type PersistentVolumeClaim struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Spec defines the volume requested by a pod author
// +optional
Spec PersistentVolumeClaimSpec
// Status represents the current information about a claim
// +optional
Status PersistentVolumeClaimStatus
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PersistentVolumeClaimList represents the list of PV claims
type PersistentVolumeClaimList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []PersistentVolumeClaim
}
// PersistentVolumeClaimSpec describes the common attributes of storage devices
// and allows a Source for provider-specific attributes
type PersistentVolumeClaimSpec struct {
// Contains the types of access modes required
// +optional
AccessModes []PersistentVolumeAccessMode
// A label query over volumes to consider for binding. This selector is
// ignored when VolumeName is set
// +optional
Selector *metav1.LabelSelector
// Resources represents the minimum resources required
// +optional
Resources ResourceRequirements
// VolumeName is the binding reference to the PersistentVolume backing this
// claim. When set to non-empty value Selector is not evaluated
// +optional
VolumeName string
// Name of the StorageClass required by the claim.
// More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#class-1
// +optional
StorageClassName *string
// volumeMode defines what type of volume is required by the claim.
// Value of Filesystem is implied when not included in claim spec.
// +optional
VolumeMode *PersistentVolumeMode
// This field can be used to specify either:
// * An existing VolumeSnapshot object (snapshot.storage.k8s.io/VolumeSnapshot)
// * An existing PVC (PersistentVolumeClaim)
// * An existing custom resource that implements data population (Alpha)
// In order to use custom resource types that implement data population,
// the AnyVolumeDataSource feature gate must be enabled.
// If the provisioner or an external controller can support the specified data source,
// it will create a new volume based on the contents of the specified data source.
// +optional
DataSource *TypedLocalObjectReference
}
// PersistentVolumeClaimConditionType defines the condition of PV claim.
// Valid values are either "Resizing" or "FileSystemResizePending".
type PersistentVolumeClaimConditionType string
// These are valid conditions of Pvc
const (
// An user trigger resize of pvc has been started
PersistentVolumeClaimResizing PersistentVolumeClaimConditionType = "Resizing"
// PersistentVolumeClaimFileSystemResizePending - controller resize is finished and a file system resize is pending on node
PersistentVolumeClaimFileSystemResizePending PersistentVolumeClaimConditionType = "FileSystemResizePending"
)
// PersistentVolumeClaimCondition represents the current condition of PV claim
type PersistentVolumeClaimCondition struct {
Type PersistentVolumeClaimConditionType
Status ConditionStatus
// +optional
LastProbeTime metav1.Time
// +optional
LastTransitionTime metav1.Time
// +optional
Reason string
// +optional
Message string
}
// PersistentVolumeClaimStatus represents the status of PV claim
type PersistentVolumeClaimStatus struct {
// Phase represents the current phase of PersistentVolumeClaim
// +optional
Phase PersistentVolumeClaimPhase
// AccessModes contains all ways the volume backing the PVC can be mounted
// +optional
AccessModes []PersistentVolumeAccessMode
// Represents the actual resources of the underlying volume
// +optional
Capacity ResourceList
// +optional
Conditions []PersistentVolumeClaimCondition
}
// PersistentVolumeAccessMode defines various access modes for PV.
type PersistentVolumeAccessMode string
// These are the valid values for PersistentVolumeAccessMode
const (
// can be mounted read/write mode to exactly 1 host
ReadWriteOnce PersistentVolumeAccessMode = "ReadWriteOnce"
// can be mounted in read-only mode to many hosts
ReadOnlyMany PersistentVolumeAccessMode = "ReadOnlyMany"
// can be mounted in read/write mode to many hosts
ReadWriteMany PersistentVolumeAccessMode = "ReadWriteMany"
)
// PersistentVolumePhase defines the phase in which a PV is
type PersistentVolumePhase string
// These are the valid values for PersistentVolumePhase
const (
// used for PersistentVolumes that are not available
VolumePending PersistentVolumePhase = "Pending"
// used for PersistentVolumes that are not yet bound
// Available volumes are held by the binder and matched to PersistentVolumeClaims
VolumeAvailable PersistentVolumePhase = "Available"
// used for PersistentVolumes that are bound
VolumeBound PersistentVolumePhase = "Bound"
// used for PersistentVolumes where the bound PersistentVolumeClaim was deleted
// released volumes must be recycled before becoming available again
// this phase is used by the persistent volume claim binder to signal to another process to reclaim the resource
VolumeReleased PersistentVolumePhase = "Released"
// used for PersistentVolumes that failed to be correctly recycled or deleted after being released from a claim
VolumeFailed PersistentVolumePhase = "Failed"
)
// PersistentVolumeClaimPhase defines the phase of PV claim
type PersistentVolumeClaimPhase string
// These are the valid value for PersistentVolumeClaimPhase
const (
// used for PersistentVolumeClaims that are not yet bound
ClaimPending PersistentVolumeClaimPhase = "Pending"
// used for PersistentVolumeClaims that are bound
ClaimBound PersistentVolumeClaimPhase = "Bound"
// used for PersistentVolumeClaims that lost their underlying
// PersistentVolume. The claim was bound to a PersistentVolume and this
// volume does not exist any longer and all data on it was lost.
ClaimLost PersistentVolumeClaimPhase = "Lost"
)
// HostPathType defines the type of host path for PV
type HostPathType string
// These are the valid values for HostPathType
const (
// For backwards compatible, leave it empty if unset
HostPathUnset HostPathType = ""
// If nothing exists at the given path, an empty directory will be created there
// as needed with file mode 0755, having the same group and ownership with Kubelet.
HostPathDirectoryOrCreate HostPathType = "DirectoryOrCreate"
// A directory must exist at the given path
HostPathDirectory HostPathType = "Directory"
// If nothing exists at the given path, an empty file will be created there
// as needed with file mode 0644, having the same group and ownership with Kubelet.
HostPathFileOrCreate HostPathType = "FileOrCreate"
// A file must exist at the given path
HostPathFile HostPathType = "File"
// A UNIX socket must exist at the given path
HostPathSocket HostPathType = "Socket"
// A character device must exist at the given path
HostPathCharDev HostPathType = "CharDevice"
// A block device must exist at the given path
HostPathBlockDev HostPathType = "BlockDevice"
)
// HostPathVolumeSource represents a host path mapped into a pod.
// Host path volumes do not support ownership management or SELinux relabeling.
type HostPathVolumeSource struct {
// If the path is a symlink, it will follow the link to the real path.
Path string
// Defaults to ""
Type *HostPathType
}
// EmptyDirVolumeSource represents an empty directory for a pod.
// Empty directory volumes support ownership management and SELinux relabeling.
type EmptyDirVolumeSource struct {
// TODO: Longer term we want to represent the selection of underlying
// media more like a scheduling problem - user says what traits they
// need, we give them a backing store that satisfies that. For now
// this will cover the most common needs.
// Optional: what type of storage medium should back this directory.
// The default is "" which means to use the node's default medium.
// +optional
Medium StorageMedium
// Total amount of local storage required for this EmptyDir volume.
// The size limit is also applicable for memory medium.
// The maximum usage on memory medium EmptyDir would be the minimum value between
// the SizeLimit specified here and the sum of memory limits of all containers in a pod.
// The default is nil which means that the limit is undefined.
// More info: http://kubernetes.io/docs/user-guide/volumes#emptydir
// +optional
SizeLimit *resource.Quantity
}
// StorageMedium defines ways that storage can be allocated to a volume.
type StorageMedium string
// These are the valid value for StorageMedium
const (
StorageMediumDefault StorageMedium = "" // use whatever the default is for the node
StorageMediumMemory StorageMedium = "Memory" // use memory (tmpfs)
StorageMediumHugePages StorageMedium = "HugePages" // use hugepages
StorageMediumHugePagesPrefix StorageMedium = "HugePages-" // prefix for full medium notation HugePages-<size>
)
// Protocol defines network protocols supported for things like container ports.
type Protocol string
const (
// ProtocolTCP is the TCP protocol.
ProtocolTCP Protocol = "TCP"
// ProtocolUDP is the UDP protocol.
ProtocolUDP Protocol = "UDP"
// ProtocolSCTP is the SCTP protocol.
ProtocolSCTP Protocol = "SCTP"
)
// GCEPersistentDiskVolumeSource represents a Persistent Disk resource in Google Compute Engine.
//
// A GCE PD must exist before mounting to a container. The disk must
// also be in the same GCE project and zone as the kubelet. A GCE PD
// can only be mounted as read/write once or read-only many times. GCE
// PDs support ownership management and SELinux relabeling.
type GCEPersistentDiskVolumeSource struct {
// Unique name of the PD resource. Used to identify the disk in GCE
PDName string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// TODO: how do we prevent errors in the filesystem from compromising the machine
// +optional
FSType string
// Optional: Partition on the disk to mount.
// If omitted, kubelet will attempt to mount the device name.
// Ex. For /dev/sda1, this field is "1", for /dev/sda, this field is 0 or empty.
// +optional
Partition int32
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// ISCSIVolumeSource represents an ISCSI disk.
// ISCSI volumes can only be mounted as read/write once.
// ISCSI volumes support ownership management and SELinux relabeling.
type ISCSIVolumeSource struct {
// Required: iSCSI target portal
// the portal is either an IP or ip_addr:port if port is other than default (typically TCP ports 860 and 3260)
// +optional
TargetPortal string
// Required: target iSCSI Qualified Name
// +optional
IQN string
// Required: iSCSI target lun number
// +optional
Lun int32
// Optional: Defaults to 'default' (tcp). iSCSI interface name that uses an iSCSI transport.
// +optional
ISCSIInterface string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// TODO: how do we prevent errors in the filesystem from compromising the machine
// +optional
FSType string
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// Optional: list of iSCSI target portal ips for high availability.
// the portal is either an IP or ip_addr:port if port is other than default (typically TCP ports 860 and 3260)
// +optional
Portals []string
// Optional: whether support iSCSI Discovery CHAP authentication
// +optional
DiscoveryCHAPAuth bool
// Optional: whether support iSCSI Session CHAP authentication
// +optional
SessionCHAPAuth bool
// Optional: CHAP secret for iSCSI target and initiator authentication.
// The secret is used if either DiscoveryCHAPAuth or SessionCHAPAuth is true
// +optional
SecretRef *LocalObjectReference
// Optional: Custom initiator name per volume.
// If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface
// <target portal>:<volume name> will be created for the connection.
// +optional
InitiatorName *string
}
// ISCSIPersistentVolumeSource represents an ISCSI disk.
// ISCSI volumes can only be mounted as read/write once.
// ISCSI volumes support ownership management and SELinux relabeling.
type ISCSIPersistentVolumeSource struct {
// Required: iSCSI target portal
// the portal is either an IP or ip_addr:port if port is other than default (typically TCP ports 860 and 3260)
// +optional
TargetPortal string
// Required: target iSCSI Qualified Name
// +optional
IQN string
// Required: iSCSI target lun number
// +optional
Lun int32
// Optional: Defaults to 'default' (tcp). iSCSI interface name that uses an iSCSI transport.
// +optional
ISCSIInterface string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// TODO: how do we prevent errors in the filesystem from compromising the machine
// +optional
FSType string
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// Optional: list of iSCSI target portal ips for high availability.
// the portal is either an IP or ip_addr:port if port is other than default (typically TCP ports 860 and 3260)
// +optional
Portals []string
// Optional: whether support iSCSI Discovery CHAP authentication
// +optional
DiscoveryCHAPAuth bool
// Optional: whether support iSCSI Session CHAP authentication
// +optional
SessionCHAPAuth bool
// Optional: CHAP secret for iSCSI target and initiator authentication.
// The secret is used if either DiscoveryCHAPAuth or SessionCHAPAuth is true
// +optional
SecretRef *SecretReference
// Optional: Custom initiator name per volume.
// If initiatorName is specified with iscsiInterface simultaneously, new iSCSI interface
// <target portal>:<volume name> will be created for the connection.
// +optional
InitiatorName *string
}
// FCVolumeSource represents a Fibre Channel volume.
// Fibre Channel volumes can only be mounted as read/write once.
// Fibre Channel volumes support ownership management and SELinux relabeling.
type FCVolumeSource struct {
// Optional: FC target worldwide names (WWNs)
// +optional
TargetWWNs []string
// Optional: FC target lun number
// +optional
Lun *int32
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// TODO: how do we prevent errors in the filesystem from compromising the machine
// +optional
FSType string
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// Optional: FC volume World Wide Identifiers (WWIDs)
// Either WWIDs or TargetWWNs and Lun must be set, but not both simultaneously.
// +optional
WWIDs []string
}
// FlexPersistentVolumeSource represents a generic persistent volume resource that is
// provisioned/attached using an exec based plugin.
type FlexPersistentVolumeSource struct {
// Driver is the name of the driver to use for this volume.
Driver string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
// +optional
FSType string
// Optional: SecretRef is reference to the secret object containing
// sensitive information to pass to the plugin scripts. This may be
// empty if no secret object is specified. If the secret object
// contains more than one secret, all secrets are passed to the plugin
// scripts.
// +optional
SecretRef *SecretReference
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// Optional: Extra driver options if any.
// +optional
Options map[string]string
}
// FlexVolumeSource represents a generic volume resource that is
// provisioned/attached using an exec based plugin.
type FlexVolumeSource struct {
// Driver is the name of the driver to use for this volume.
Driver string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". The default filesystem depends on FlexVolume script.
// +optional
FSType string
// Optional: SecretRef is reference to the secret object containing
// sensitive information to pass to the plugin scripts. This may be
// empty if no secret object is specified. If the secret object
// contains more than one secret, all secrets are passed to the plugin
// scripts.
// +optional
SecretRef *LocalObjectReference
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// Optional: Extra driver options if any.
// +optional
Options map[string]string
}
// AWSElasticBlockStoreVolumeSource represents a Persistent Disk resource in AWS.
//
// An AWS EBS disk must exist before mounting to a container. The disk
// must also be in the same AWS zone as the kubelet. An AWS EBS disk
// can only be mounted as read/write once. AWS EBS volumes support
// ownership management and SELinux relabeling.
type AWSElasticBlockStoreVolumeSource struct {
// Unique id of the persistent disk resource. Used to identify the disk in AWS
VolumeID string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// TODO: how do we prevent errors in the filesystem from compromising the machine
// +optional
FSType string
// Optional: Partition on the disk to mount.
// If omitted, kubelet will attempt to mount the device name.
// Ex. For /dev/sda1, this field is "1", for /dev/sda, this field is 0 or empty.
// +optional
Partition int32
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// GitRepoVolumeSource represents a volume that is populated with the contents of a git repository.
// Git repo volumes do not support ownership management.
// Git repo volumes support SELinux relabeling.
//
// DEPRECATED: GitRepo is deprecated. To provision a container with a git repo, mount an
// EmptyDir into an InitContainer that clones the repo using git, then mount the EmptyDir
// into the Pod's container.
type GitRepoVolumeSource struct {
// Repository URL
Repository string
// Commit hash, this is optional
// +optional
Revision string
// Clone target, this is optional
// Must not contain or start with '..'. If '.' is supplied, the volume directory will be the
// git repository. Otherwise, if specified, the volume will contain the git repository in
// the subdirectory with the given name.
// +optional
Directory string
// TODO: Consider credentials here.
}
// SecretVolumeSource adapts a Secret into a volume.
//
// The contents of the target Secret's Data field will be presented in a volume
// as files using the keys in the Data field as the file names.
// Secret volumes support ownership management and SELinux relabeling.
type SecretVolumeSource struct {
// Name of the secret in the pod's namespace to use.
// +optional
SecretName string
// If unspecified, each key-value pair in the Data field of the referenced
// Secret will be projected into the volume as a file whose name is the
// key and content is the value. If specified, the listed keys will be
// projected into the specified paths, and unlisted keys will not be
// present. If a key is specified which is not present in the Secret,
// the volume setup will error unless it is marked optional. Paths must be
// relative and may not contain the '..' path or start with '..'.
// +optional
Items []KeyToPath
// Mode bits to use on created files by default. Must be a value between
// 0 and 0777.
// Directories within the path are not affected by this setting.
// This might be in conflict with other options that affect the file
// mode, like fsGroup, and the result can be other mode bits set.
// +optional
DefaultMode *int32
// Specify whether the Secret or its key must be defined
// +optional
Optional *bool
}
// SecretProjection adapts a secret into a projected volume.
//
// The contents of the target Secret's Data field will be presented in a
// projected volume as files using the keys in the Data field as the file names.
// Note that this is identical to a secret volume source without the default
// mode.
type SecretProjection struct {
LocalObjectReference
// If unspecified, each key-value pair in the Data field of the referenced
// Secret will be projected into the volume as a file whose name is the
// key and content is the value. If specified, the listed keys will be
// projected into the specified paths, and unlisted keys will not be
// present. If a key is specified which is not present in the Secret,
// the volume setup will error unless it is marked optional. Paths must be
// relative and may not contain the '..' path or start with '..'.
// +optional
Items []KeyToPath
// Specify whether the Secret or its key must be defined
// +optional
Optional *bool
}
// NFSVolumeSource represents an NFS mount that lasts the lifetime of a pod.
// NFS volumes do not support ownership management or SELinux relabeling.
type NFSVolumeSource struct {
// Server is the hostname or IP address of the NFS server
Server string
// Path is the exported NFS share
Path string
// Optional: Defaults to false (read/write). ReadOnly here will force
// the NFS export to be mounted with read-only permissions
// +optional
ReadOnly bool
}
// QuobyteVolumeSource represents a Quobyte mount that lasts the lifetime of a pod.
// Quobyte volumes do not support ownership management or SELinux relabeling.
type QuobyteVolumeSource struct {
// Registry represents a single or multiple Quobyte Registry services
// specified as a string as host:port pair (multiple entries are separated with commas)
// which acts as the central registry for volumes
Registry string
// Volume is a string that references an already created Quobyte volume by name.
Volume string
// Defaults to false (read/write). ReadOnly here will force
// the Quobyte to be mounted with read-only permissions
// +optional
ReadOnly bool
// User to map volume access to
// Defaults to the root user
// +optional
User string
// Group to map volume access to
// Default is no group
// +optional
Group string
// Tenant owning the given Quobyte volume in the Backend
// Used with dynamically provisioned Quobyte volumes, value is set by the plugin
// +optional
Tenant string
}
// GlusterfsVolumeSource represents a Glusterfs mount that lasts the lifetime of a pod.
// Glusterfs volumes do not support ownership management or SELinux relabeling.
type GlusterfsVolumeSource struct {
// Required: EndpointsName is the endpoint name that details Glusterfs topology
EndpointsName string
// Required: Path is the Glusterfs volume path
Path string
// Optional: Defaults to false (read/write). ReadOnly here will force
// the Glusterfs to be mounted with read-only permissions
// +optional
ReadOnly bool
}
// GlusterfsPersistentVolumeSource represents a Glusterfs mount that lasts the lifetime of a pod.
// Glusterfs volumes do not support ownership management or SELinux relabeling.
type GlusterfsPersistentVolumeSource struct {
// EndpointsName is the endpoint name that details Glusterfs topology.
// More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
EndpointsName string
// Path is the Glusterfs volume path.
// More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
Path string
// ReadOnly here will force the Glusterfs volume to be mounted with read-only permissions.
// Defaults to false.
// More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
// +optional
ReadOnly bool
// EndpointsNamespace is the namespace that contains Glusterfs endpoint.
// If this field is empty, the EndpointNamespace defaults to the same namespace as the bound PVC.
// More info: https://examples.k8s.io/volumes/glusterfs/README.md#create-a-pod
// +optional
EndpointsNamespace *string
}
// RBDVolumeSource represents a Rados Block Device mount that lasts the lifetime of a pod.
// RBD volumes support ownership management and SELinux relabeling.
type RBDVolumeSource struct {
// Required: CephMonitors is a collection of Ceph monitors
CephMonitors []string
// Required: RBDImage is the rados image name
RBDImage string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// TODO: how do we prevent errors in the filesystem from compromising the machine
// +optional
FSType string
// Optional: RadosPool is the rados pool name,default is rbd
// +optional
RBDPool string
// Optional: RBDUser is the rados user name, default is admin
// +optional
RadosUser string
// Optional: Keyring is the path to key ring for RBDUser, default is /etc/ceph/keyring
// +optional
Keyring string
// Optional: SecretRef is name of the authentication secret for RBDUser, default is nil.
// +optional
SecretRef *LocalObjectReference
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// RBDPersistentVolumeSource represents a Rados Block Device mount that lasts the lifetime of a pod.
// RBD volumes support ownership management and SELinux relabeling.
type RBDPersistentVolumeSource struct {
// Required: CephMonitors is a collection of Ceph monitors
CephMonitors []string
// Required: RBDImage is the rados image name
RBDImage string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// TODO: how do we prevent errors in the filesystem from compromising the machine
// +optional
FSType string
// Optional: RadosPool is the rados pool name,default is rbd
// +optional
RBDPool string
// Optional: RBDUser is the rados user name, default is admin
// +optional
RadosUser string
// Optional: Keyring is the path to key ring for RBDUser, default is /etc/ceph/keyring
// +optional
Keyring string
// Optional: SecretRef is reference to the authentication secret for User, default is empty.
// +optional
SecretRef *SecretReference
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// CinderVolumeSource represents a cinder volume resource in Openstack. A Cinder volume
// must exist before mounting to a container. The volume must also be
// in the same region as the kubelet. Cinder volumes support ownership
// management and SELinux relabeling.
type CinderVolumeSource struct {
// Unique id of the volume used to identify the cinder volume.
VolumeID string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// +optional
FSType string
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// Optional: points to a secret object containing parameters used to connect
// to OpenStack.
// +optional
SecretRef *LocalObjectReference
}
// CinderPersistentVolumeSource represents a cinder volume resource in Openstack. A Cinder volume
// must exist before mounting to a container. The volume must also be
// in the same region as the kubelet. Cinder volumes support ownership
// management and SELinux relabeling.
type CinderPersistentVolumeSource struct {
// Unique id of the volume used to identify the cinder volume.
VolumeID string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// +optional
FSType string
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// Optional: points to a secret object containing parameters used to connect
// to OpenStack.
// +optional
SecretRef *SecretReference
}
// CephFSVolumeSource represents a Ceph Filesystem mount that lasts the lifetime of a pod
// Cephfs volumes do not support ownership management or SELinux relabeling.
type CephFSVolumeSource struct {
// Required: Monitors is a collection of Ceph monitors
Monitors []string
// Optional: Used as the mounted root, rather than the full Ceph tree, default is /
// +optional
Path string
// Optional: User is the rados user name, default is admin
// +optional
User string
// Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret
// +optional
SecretFile string
// Optional: SecretRef is reference to the authentication secret for User, default is empty.
// +optional
SecretRef *LocalObjectReference
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// SecretReference represents a Secret Reference. It has enough information to retrieve secret
// in any namespace
type SecretReference struct {
// Name is unique within a namespace to reference a secret resource.
// +optional
Name string
// Namespace defines the space within which the secret name must be unique.
// +optional
Namespace string
}
// CephFSPersistentVolumeSource represents a Ceph Filesystem mount that lasts the lifetime of a pod
// Cephfs volumes do not support ownership management or SELinux relabeling.
type CephFSPersistentVolumeSource struct {
// Required: Monitors is a collection of Ceph monitors
Monitors []string
// Optional: Used as the mounted root, rather than the full Ceph tree, default is /
// +optional
Path string
// Optional: User is the rados user name, default is admin
// +optional
User string
// Optional: SecretFile is the path to key ring for User, default is /etc/ceph/user.secret
// +optional
SecretFile string
// Optional: SecretRef is reference to the authentication secret for User, default is empty.
// +optional
SecretRef *SecretReference
// Optional: Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// FlockerVolumeSource represents a Flocker volume mounted by the Flocker agent.
// One and only one of datasetName and datasetUUID should be set.
// Flocker volumes do not support ownership management or SELinux relabeling.
type FlockerVolumeSource struct {
// Name of the dataset stored as metadata -> name on the dataset for Flocker
// should be considered as deprecated
// +optional
DatasetName string
// UUID of the dataset. This is unique identifier of a Flocker dataset
// +optional
DatasetUUID string
}
// DownwardAPIVolumeSource represents a volume containing downward API info.
// Downward API volumes support ownership management and SELinux relabeling.
type DownwardAPIVolumeSource struct {
// Items is a list of DownwardAPIVolume file
// +optional
Items []DownwardAPIVolumeFile
// Mode bits to use on created files by default. Must be a value between
// 0 and 0777.
// Directories within the path are not affected by this setting.
// This might be in conflict with other options that affect the file
// mode, like fsGroup, and the result can be other mode bits set.
// +optional
DefaultMode *int32
}
// DownwardAPIVolumeFile represents a single file containing information from the downward API
type DownwardAPIVolumeFile struct {
// Required: Path is the relative path name of the file to be created. Must not be absolute or contain the '..' path. Must be utf-8 encoded. The first item of the relative path must not start with '..'
Path string
// Required: Selects a field of the pod: only annotations, labels, name, namespace and uid are supported.
// +optional
FieldRef *ObjectFieldSelector
// Selects a resource of the container: only resources limits and requests
// (limits.cpu, limits.memory, requests.cpu and requests.memory) are currently supported.
// +optional
ResourceFieldRef *ResourceFieldSelector
// Optional: mode bits to use on this file, must be a value between 0
// and 0777. If not specified, the volume defaultMode will be used.
// This might be in conflict with other options that affect the file
// mode, like fsGroup, and the result can be other mode bits set.
// +optional
Mode *int32
}
// DownwardAPIProjection represents downward API info for projecting into a projected volume.
// Note that this is identical to a downwardAPI volume source without the default
// mode.
type DownwardAPIProjection struct {
// Items is a list of DownwardAPIVolume file
// +optional
Items []DownwardAPIVolumeFile
}
// AzureFileVolumeSource azureFile represents an Azure File Service mount on the host and bind mount to the pod.
type AzureFileVolumeSource struct {
// the name of secret that contains Azure Storage Account Name and Key
SecretName string
// Share Name
ShareName string
// Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// AzureFilePersistentVolumeSource represents an Azure File Service mount on the host and bind mount to the pod.
type AzureFilePersistentVolumeSource struct {
// the name of secret that contains Azure Storage Account Name and Key
SecretName string
// Share Name
ShareName string
// Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// the namespace of the secret that contains Azure Storage Account Name and Key
// default is the same as the Pod
// +optional
SecretNamespace *string
}
// VsphereVirtualDiskVolumeSource represents a vSphere volume resource.
type VsphereVirtualDiskVolumeSource struct {
// Path that identifies vSphere volume vmdk
VolumePath string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// +optional
FSType string
// Storage Policy Based Management (SPBM) profile name.
// +optional
StoragePolicyName string
// Storage Policy Based Management (SPBM) profile ID associated with the StoragePolicyName.
// +optional
StoragePolicyID string
}
// PhotonPersistentDiskVolumeSource represents a Photon Controller persistent disk resource.
type PhotonPersistentDiskVolumeSource struct {
// ID that identifies Photon Controller persistent disk
PdID string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
FSType string
}
// PortworxVolumeSource represents a Portworx volume resource.
type PortworxVolumeSource struct {
// VolumeID uniquely identifies a Portworx volume
VolumeID string
// FSType represents the filesystem type to mount
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs". Implicitly inferred to be "ext4" if unspecified.
// +optional
FSType string
// Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// AzureDataDiskCachingMode defines the caching mode for Azure data disk
type AzureDataDiskCachingMode string
// AzureDataDiskKind defines the kind of Azure data disk
type AzureDataDiskKind string
// Defines cache mode and kinds for Azure data disk
const (
AzureDataDiskCachingNone AzureDataDiskCachingMode = "None"
AzureDataDiskCachingReadOnly AzureDataDiskCachingMode = "ReadOnly"
AzureDataDiskCachingReadWrite AzureDataDiskCachingMode = "ReadWrite"
AzureSharedBlobDisk AzureDataDiskKind = "Shared"
AzureDedicatedBlobDisk AzureDataDiskKind = "Dedicated"
AzureManagedDisk AzureDataDiskKind = "Managed"
)
// AzureDiskVolumeSource represents an Azure Data Disk mount on the host and bind mount to the pod.
type AzureDiskVolumeSource struct {
// The Name of the data disk in the blob storage
DiskName string
// The URI of the data disk in the blob storage
DataDiskURI string
// Host Caching mode: None, Read Only, Read Write.
// +optional
CachingMode *AzureDataDiskCachingMode
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// +optional
FSType *string
// Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly *bool
// Expected values Shared: multiple blob disks per storage account Dedicated: single blob disk per storage account Managed: azure managed data disk (only in managed availability set). defaults to shared
Kind *AzureDataDiskKind
}
// ScaleIOVolumeSource represents a persistent ScaleIO volume
type ScaleIOVolumeSource struct {
// The host address of the ScaleIO API Gateway.
Gateway string
// The name of the storage system as configured in ScaleIO.
System string
// SecretRef references to the secret for ScaleIO user and other
// sensitive information. If this is not provided, Login operation will fail.
SecretRef *LocalObjectReference
// Flag to enable/disable SSL communication with Gateway, default false
// +optional
SSLEnabled bool
// The name of the ScaleIO Protection Domain for the configured storage.
// +optional
ProtectionDomain string
// The ScaleIO Storage Pool associated with the protection domain.
// +optional
StoragePool string
// Indicates whether the storage for a volume should be ThickProvisioned or ThinProvisioned.
// Default is ThinProvisioned.
// +optional
StorageMode string
// The name of a volume already created in the ScaleIO system
// that is associated with this volume source.
VolumeName string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs".
// Default is "xfs".
// +optional
FSType string
// Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// ScaleIOPersistentVolumeSource represents a persistent ScaleIO volume that can be defined
// by a an admin via a storage class, for instance.
type ScaleIOPersistentVolumeSource struct {
// The host address of the ScaleIO API Gateway.
Gateway string
// The name of the storage system as configured in ScaleIO.
System string
// SecretRef references to the secret for ScaleIO user and other
// sensitive information. If this is not provided, Login operation will fail.
SecretRef *SecretReference
// Flag to enable/disable SSL communication with Gateway, default false
// +optional
SSLEnabled bool
// The name of the ScaleIO Protection Domain for the configured storage.
// +optional
ProtectionDomain string
// The ScaleIO Storage Pool associated with the protection domain.
// +optional
StoragePool string
// Indicates whether the storage for a volume should be ThickProvisioned or ThinProvisioned.
// Default is ThinProvisioned.
// +optional
StorageMode string
// The name of a volume created in the ScaleIO system
// that is associated with this volume source.
VolumeName string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs".
// Default is "xfs".
// +optional
FSType string
// Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
}
// StorageOSVolumeSource represents a StorageOS persistent volume resource.
type StorageOSVolumeSource struct {
// VolumeName is the human-readable name of the StorageOS volume. Volume
// names are only unique within a namespace.
VolumeName string
// VolumeNamespace specifies the scope of the volume within StorageOS. If no
// namespace is specified then the Pod's namespace will be used. This allows the
// Kubernetes name scoping to be mirrored within StorageOS for tighter integration.
// Set VolumeName to any name to override the default behaviour.
// Set to "default" if you are not using namespaces within StorageOS.
// Namespaces that do not pre-exist within StorageOS will be created.
// +optional
VolumeNamespace string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// +optional
FSType string
// Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// SecretRef specifies the secret to use for obtaining the StorageOS API
// credentials. If not specified, default values will be attempted.
// +optional
SecretRef *LocalObjectReference
}
// StorageOSPersistentVolumeSource represents a StorageOS persistent volume resource.
type StorageOSPersistentVolumeSource struct {
// VolumeName is the human-readable name of the StorageOS volume. Volume
// names are only unique within a namespace.
VolumeName string
// VolumeNamespace specifies the scope of the volume within StorageOS. If no
// namespace is specified then the Pod's namespace will be used. This allows the
// Kubernetes name scoping to be mirrored within StorageOS for tighter integration.
// Set VolumeName to any name to override the default behaviour.
// Set to "default" if you are not using namespaces within StorageOS.
// Namespaces that do not pre-exist within StorageOS will be created.
// +optional
VolumeNamespace string
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". Implicitly inferred to be "ext4" if unspecified.
// +optional
FSType string
// Defaults to false (read/write). ReadOnly here will force
// the ReadOnly setting in VolumeMounts.
// +optional
ReadOnly bool
// SecretRef specifies the secret to use for obtaining the StorageOS API
// credentials. If not specified, default values will be attempted.
// +optional
SecretRef *ObjectReference
}
// ConfigMapVolumeSource adapts a ConfigMap into a volume.
//
// The contents of the target ConfigMap's Data field will be presented in a
// volume as files using the keys in the Data field as the file names, unless
// the items element is populated with specific mappings of keys to paths.
// ConfigMap volumes support ownership management and SELinux relabeling.
type ConfigMapVolumeSource struct {
LocalObjectReference
// If unspecified, each key-value pair in the Data field of the referenced
// ConfigMap will be projected into the volume as a file whose name is the
// key and content is the value. If specified, the listed keys will be
// projected into the specified paths, and unlisted keys will not be
// present. If a key is specified which is not present in the ConfigMap,
// the volume setup will error unless it is marked optional. Paths must be
// relative and may not contain the '..' path or start with '..'.
// +optional
Items []KeyToPath
// Mode bits to use on created files by default. Must be a value between
// 0 and 0777.
// Directories within the path are not affected by this setting.
// This might be in conflict with other options that affect the file
// mode, like fsGroup, and the result can be other mode bits set.
// +optional
DefaultMode *int32
// Specify whether the ConfigMap or its keys must be defined
// +optional
Optional *bool
}
// ConfigMapProjection adapts a ConfigMap into a projected volume.
//
// The contents of the target ConfigMap's Data field will be presented in a
// projected volume as files using the keys in the Data field as the file names,
// unless the items element is populated with specific mappings of keys to paths.
// Note that this is identical to a configmap volume source without the default
// mode.
type ConfigMapProjection struct {
LocalObjectReference
// If unspecified, each key-value pair in the Data field of the referenced
// ConfigMap will be projected into the volume as a file whose name is the
// key and content is the value. If specified, the listed keys will be
// projected into the specified paths, and unlisted keys will not be
// present. If a key is specified which is not present in the ConfigMap,
// the volume setup will error unless it is marked optional. Paths must be
// relative and may not contain the '..' path or start with '..'.
// +optional
Items []KeyToPath
// Specify whether the ConfigMap or its keys must be defined
// +optional
Optional *bool
}
// ServiceAccountTokenProjection represents a projected service account token
// volume. This projection can be used to insert a service account token into
// the pods runtime filesystem for use against APIs (Kubernetes API Server or
// otherwise).
type ServiceAccountTokenProjection struct {
// Audience is the intended audience of the token. A recipient of a token
// must identify itself with an identifier specified in the audience of the
// token, and otherwise should reject the token. The audience defaults to the
// identifier of the apiserver.
Audience string
// ExpirationSeconds is the requested duration of validity of the service
// account token. As the token approaches expiration, the kubelet volume
// plugin will proactively rotate the service account token. The kubelet will
// start trying to rotate the token if the token is older than 80 percent of
// its time to live or if the token is older than 24 hours.Defaults to 1 hour
// and must be at least 10 minutes.
ExpirationSeconds int64
// Path is the path relative to the mount point of the file to project the
// token into.
Path string
}
// ProjectedVolumeSource represents a projected volume source
type ProjectedVolumeSource struct {
// list of volume projections
Sources []VolumeProjection
// Mode bits to use on created files by default. Must be a value between
// 0 and 0777.
// Directories within the path are not affected by this setting.
// This might be in conflict with other options that affect the file
// mode, like fsGroup, and the result can be other mode bits set.
// +optional
DefaultMode *int32
}
// VolumeProjection that may be projected along with other supported volume types
type VolumeProjection struct {
// all types below are the supported types for projection into the same volume
// information about the secret data to project
Secret *SecretProjection
// information about the downwardAPI data to project
DownwardAPI *DownwardAPIProjection
// information about the configMap data to project
ConfigMap *ConfigMapProjection
// information about the serviceAccountToken data to project
ServiceAccountToken *ServiceAccountTokenProjection
}
// KeyToPath maps a string key to a path within a volume.
type KeyToPath struct {
// The key to project.
Key string
// The relative path of the file to map the key to.
// May not be an absolute path.
// May not contain the path element '..'.
// May not start with the string '..'.
Path string
// Optional: mode bits to use on this file, should be a value between 0
// and 0777. If not specified, the volume defaultMode will be used.
// This might be in conflict with other options that affect the file
// mode, like fsGroup, and the result can be other mode bits set.
// +optional
Mode *int32
}
// LocalVolumeSource represents directly-attached storage with node affinity (Beta feature)
type LocalVolumeSource struct {
// The full path to the volume on the node.
// It can be either a directory or block device (disk, partition, ...).
Path string
// Filesystem type to mount.
// It applies only when the Path is a block device.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs". The default value is to auto-select a fileystem if unspecified.
// +optional
FSType *string
}
// CSIPersistentVolumeSource represents storage that is managed by an external CSI volume driver.
type CSIPersistentVolumeSource struct {
// Driver is the name of the driver to use for this volume.
// Required.
Driver string
// VolumeHandle is the unique volume name returned by the CSI volume
// plugin’s CreateVolume to refer to the volume on all subsequent calls.
// Required.
VolumeHandle string
// Optional: The value to pass to ControllerPublishVolumeRequest.
// Defaults to false (read/write).
// +optional
ReadOnly bool
// Filesystem type to mount.
// Must be a filesystem type supported by the host operating system.
// Ex. "ext4", "xfs", "ntfs".
// +optional
FSType string
// Attributes of the volume to publish.
// +optional
VolumeAttributes map[string]string
// ControllerPublishSecretRef is a reference to the secret object containing
// sensitive information to pass to the CSI driver to complete the CSI
// ControllerPublishVolume and ControllerUnpublishVolume calls.
// This field is optional, and may be empty if no secret is required. If the
// secret object contains more than one secret, all secrets are passed.
// +optional
ControllerPublishSecretRef *SecretReference
// NodeStageSecretRef is a reference to the secret object containing sensitive
// information to pass to the CSI driver to complete the CSI NodeStageVolume
// and NodeStageVolume and NodeUnstageVolume calls.
// This field is optional, and may be empty if no secret is required. If the
// secret object contains more than one secret, all secrets are passed.
// +optional
NodeStageSecretRef *SecretReference
// NodePublishSecretRef is a reference to the secret object containing
// sensitive information to pass to the CSI driver to complete the CSI
// NodePublishVolume and NodeUnpublishVolume calls.
// This field is optional, and may be empty if no secret is required. If the
// secret object contains more than one secret, all secrets are passed.
// +optional
NodePublishSecretRef *SecretReference
// ControllerExpandSecretRef is a reference to the secret object containing
// sensitive information to pass to the CSI driver to complete the CSI
// ControllerExpandVolume call.
// This is an alpha field and requires enabling ExpandCSIVolumes feature gate.
// This field is optional, and may be empty if no secret is required. If the
// secret object contains more than one secret, all secrets are passed.
// +optional
ControllerExpandSecretRef *SecretReference
}
// CSIVolumeSource represents a source location of a volume to mount, managed by an external CSI driver
type CSIVolumeSource struct {
// Driver is the name of the CSI driver that handles this volume.
// Consult with your admin for the correct name as registered in the cluster.
// Required.
Driver string
// Specifies a read-only configuration for the volume.
// Defaults to false (read/write).
// +optional
ReadOnly *bool
// Filesystem type to mount. Ex. "ext4", "xfs", "ntfs".
// If not provided, the empty value is passed to the associated CSI driver
// which will determine the default filesystem to apply.
// +optional
FSType *string
// VolumeAttributes stores driver-specific properties that are passed to the CSI
// driver. Consult your driver's documentation for supported values.
// +optional
VolumeAttributes map[string]string
// NodePublishSecretRef is a reference to the secret object containing
// sensitive information to pass to the CSI driver to complete the CSI
// NodePublishVolume and NodeUnpublishVolume calls.
// This field is optional, and may be empty if no secret is required. If the
// secret object contains more than one secret, all secret references are passed.
// +optional
NodePublishSecretRef *LocalObjectReference
}
// EphemeralVolumeSource represents an ephemeral volume that is handled by a normal storage driver.
type EphemeralVolumeSource struct {
// VolumeClaimTemplate will be used to create a stand-alone PVC to provision the volume.
// The pod in which this EphemeralVolumeSource is embedded will be the
// owner of the PVC, i.e. the PVC will be deleted together with the
// pod. The name of the PVC will be `<pod name>-<volume name>` where
// `<volume name>` is the name from the `PodSpec.Volumes` array
// entry. Pod validation will reject the pod if the concatenated name
// is not valid for a PVC (for example, too long).
//
// An existing PVC with that name that is not owned by the pod
// will *not* be used for the pod to avoid using an unrelated
// volume by mistake. Starting the pod is then blocked until
// the unrelated PVC is removed. If such a pre-created PVC is
// meant to be used by the pod, the PVC has to updated with an
// owner reference to the pod once the pod exists. Normally
// this should not be necessary, but it may be useful when
// manually reconstructing a broken cluster.
//
// This field is read-only and no changes will be made by Kubernetes
// to the PVC after it has been created.
//
// Required, must not be nil.
VolumeClaimTemplate *PersistentVolumeClaimTemplate
// ReadOnly specifies a read-only configuration for the volume.
// Defaults to false (read/write).
// +optional
ReadOnly bool
}
// PersistentVolumeClaimTemplate is used to produce
// PersistentVolumeClaim objects as part of an EphemeralVolumeSource.
type PersistentVolumeClaimTemplate struct {
// ObjectMeta may contain labels and annotations that will be copied into the PVC
// when creating it. No other fields are allowed and will be rejected during
// validation.
// +optional
metav1.ObjectMeta
// Spec for the PersistentVolumeClaim. The entire content is
// copied unchanged into the PVC that gets created from this
// template. The same fields as in a PersistentVolumeClaim
// are also valid here.
Spec PersistentVolumeClaimSpec
}
// ContainerPort represents a network port in a single container
type ContainerPort struct {
// Optional: If specified, this must be an IANA_SVC_NAME Each named port
// in a pod must have a unique name.
// +optional
Name string
// Optional: If specified, this must be a valid port number, 0 < x < 65536.
// If HostNetwork is specified, this must match ContainerPort.
// +optional
HostPort int32
// Required: This must be a valid port number, 0 < x < 65536.
ContainerPort int32
// Required: Supports "TCP", "UDP" and "SCTP"
// +optional
Protocol Protocol
// Optional: What host IP to bind the external port to.
// +optional
HostIP string
}
// VolumeMount describes a mounting of a Volume within a container.
type VolumeMount struct {
// Required: This must match the Name of a Volume [above].
Name string
// Optional: Defaults to false (read-write).
// +optional
ReadOnly bool
// Required. If the path is not an absolute path (e.g. some/path) it
// will be prepended with the appropriate root prefix for the operating
// system. On Linux this is '/', on Windows this is 'C:\'.
MountPath string
// Path within the volume from which the container's volume should be mounted.
// Defaults to "" (volume's root).
// +optional
SubPath string
// mountPropagation determines how mounts are propagated from the host
// to container and the other way around.
// When not set, MountPropagationNone is used.
// This field is beta in 1.10.
// +optional
MountPropagation *MountPropagationMode
// Expanded path within the volume from which the container's volume should be mounted.
// Behaves similarly to SubPath but environment variable references $(VAR_NAME) are expanded using the container's environment.
// Defaults to "" (volume's root).
// SubPathExpr and SubPath are mutually exclusive.
// +optional
SubPathExpr string
}
// MountPropagationMode describes mount propagation.
type MountPropagationMode string
const (
// MountPropagationNone means that the volume in a container will
// not receive new mounts from the host or other containers, and filesystems
// mounted inside the container won't be propagated to the host or other
// containers.
// Note that this mode corresponds to "private" in Linux terminology.
MountPropagationNone MountPropagationMode = "None"
// MountPropagationHostToContainer means that the volume in a container will
// receive new mounts from the host or other containers, but filesystems
// mounted inside the container won't be propagated to the host or other
// containers.
// Note that this mode is recursively applied to all mounts in the volume
// ("rslave" in Linux terminology).
MountPropagationHostToContainer MountPropagationMode = "HostToContainer"
// MountPropagationBidirectional means that the volume in a container will
// receive new mounts from the host or other containers, and its own mounts
// will be propagated from the container to the host or other containers.
// Note that this mode is recursively applied to all mounts in the volume
// ("rshared" in Linux terminology).
MountPropagationBidirectional MountPropagationMode = "Bidirectional"
)
// VolumeDevice describes a mapping of a raw block device within a container.
type VolumeDevice struct {
// name must match the name of a persistentVolumeClaim in the pod
Name string
// devicePath is the path inside of the container that the device will be mapped to.
DevicePath string
}
// EnvVar represents an environment variable present in a Container.
type EnvVar struct {
// Required: This must be a C_IDENTIFIER.
Name string
// Optional: no more than one of the following may be specified.
// Optional: Defaults to ""; variable references $(VAR_NAME) are expanded
// using the previous defined environment variables in the container and
// any service environment variables. If a variable cannot be resolved,
// the reference in the input string will be unchanged. The $(VAR_NAME)
// syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped
// references will never be expanded, regardless of whether the variable
// exists or not.
// +optional
Value string
// Optional: Specifies a source the value of this var should come from.
// +optional
ValueFrom *EnvVarSource
}
// EnvVarSource represents a source for the value of an EnvVar.
// Only one of its fields may be set.
type EnvVarSource struct {
// Selects a field of the pod: supports metadata.name, metadata.namespace, `metadata.labels['<KEY>']`, `metadata.annotations['<KEY>']`,
// metadata.uid, spec.nodeName, spec.serviceAccountName, status.hostIP, status.podIP, status.podIPs.
// +optional
FieldRef *ObjectFieldSelector
// Selects a resource of the container: only resources limits and requests
// (limits.cpu, limits.memory, limits.ephemeral-storage, requests.cpu, requests.memory and requests.ephemeral-storage) are currently supported.
// +optional
ResourceFieldRef *ResourceFieldSelector
// Selects a key of a ConfigMap.
// +optional
ConfigMapKeyRef *ConfigMapKeySelector
// Selects a key of a secret in the pod's namespace.
// +optional
SecretKeyRef *SecretKeySelector
}
// ObjectFieldSelector selects an APIVersioned field of an object.
type ObjectFieldSelector struct {
// Required: Version of the schema the FieldPath is written in terms of.
// If no value is specified, it will be defaulted to the APIVersion of the
// enclosing object.
APIVersion string
// Required: Path of the field to select in the specified API version
FieldPath string
}
// ResourceFieldSelector represents container resources (cpu, memory) and their output format
type ResourceFieldSelector struct {
// Container name: required for volumes, optional for env vars
// +optional
ContainerName string
// Required: resource to select
Resource string
// Specifies the output format of the exposed resources, defaults to "1"
// +optional
Divisor resource.Quantity
}
// ConfigMapKeySelector selects a key from a ConfigMap.
type ConfigMapKeySelector struct {
// The ConfigMap to select from.
LocalObjectReference
// The key to select.
Key string
// Specify whether the ConfigMap or its key must be defined
// +optional
Optional *bool
}
// SecretKeySelector selects a key of a Secret.
type SecretKeySelector struct {
// The name of the secret in the pod's namespace to select from.
LocalObjectReference
// The key of the secret to select from. Must be a valid secret key.
Key string
// Specify whether the Secret or its key must be defined
// +optional
Optional *bool
}
// EnvFromSource represents the source of a set of ConfigMaps
type EnvFromSource struct {
// An optional identifier to prepend to each key in the ConfigMap.
// +optional
Prefix string
// The ConfigMap to select from.
//+optional
ConfigMapRef *ConfigMapEnvSource
// The Secret to select from.
//+optional
SecretRef *SecretEnvSource
}
// ConfigMapEnvSource selects a ConfigMap to populate the environment
// variables with.
//
// The contents of the target ConfigMap's Data field will represent the
// key-value pairs as environment variables.
type ConfigMapEnvSource struct {
// The ConfigMap to select from.
LocalObjectReference
// Specify whether the ConfigMap must be defined
// +optional
Optional *bool
}
// SecretEnvSource selects a Secret to populate the environment
// variables with.
//
// The contents of the target Secret's Data field will represent the
// key-value pairs as environment variables.
type SecretEnvSource struct {
// The Secret to select from.
LocalObjectReference
// Specify whether the Secret must be defined
// +optional
Optional *bool
}
// HTTPHeader describes a custom header to be used in HTTP probes
type HTTPHeader struct {
// The header field name
Name string
// The header field value
Value string
}
// HTTPGetAction describes an action based on HTTP Get requests.
type HTTPGetAction struct {
// Optional: Path to access on the HTTP server.
// +optional
Path string
// Required: Name or number of the port to access on the container.
// +optional
Port intstr.IntOrString
// Optional: Host name to connect to, defaults to the pod IP. You
// probably want to set "Host" in httpHeaders instead.
// +optional
Host string
// Optional: Scheme to use for connecting to the host, defaults to HTTP.
// +optional
Scheme URIScheme
// Optional: Custom headers to set in the request. HTTP allows repeated headers.
// +optional
HTTPHeaders []HTTPHeader
}
// URIScheme identifies the scheme used for connection to a host for Get actions
type URIScheme string
const (
// URISchemeHTTP means that the scheme used will be http://
URISchemeHTTP URIScheme = "HTTP"
// URISchemeHTTPS means that the scheme used will be https://
URISchemeHTTPS URIScheme = "HTTPS"
)
// TCPSocketAction describes an action based on opening a socket
type TCPSocketAction struct {
// Required: Port to connect to.
// +optional
Port intstr.IntOrString
// Optional: Host name to connect to, defaults to the pod IP.
// +optional
Host string
}
// ExecAction describes a "run in container" action.
type ExecAction struct {
// Command is the command line to execute inside the container, the working directory for the
// command is root ('/') in the container's filesystem. The command is simply exec'd, it is
// not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use
// a shell, you need to explicitly call out to that shell.
// +optional
Command []string
}
// Probe describes a health check to be performed against a container to determine whether it is
// alive or ready to receive traffic.
type Probe struct {
// The action taken to determine the health of a container
Handler
// Length of time before health checking is activated. In seconds.
// +optional
InitialDelaySeconds int32
// Length of time before health checking times out. In seconds.
// +optional
TimeoutSeconds int32
// How often (in seconds) to perform the probe.
// +optional
PeriodSeconds int32
// Minimum consecutive successes for the probe to be considered successful after having failed.
// Must be 1 for liveness and startup.
// +optional
SuccessThreshold int32
// Minimum consecutive failures for the probe to be considered failed after having succeeded.
// +optional
FailureThreshold int32
}
// PullPolicy describes a policy for if/when to pull a container image
type PullPolicy string
const (
// PullAlways means that kubelet always attempts to pull the latest image. Container will fail If the pull fails.
PullAlways PullPolicy = "Always"
// PullNever means that kubelet never pulls an image, but only uses a local image. Container will fail if the image isn't present
PullNever PullPolicy = "Never"
// PullIfNotPresent means that kubelet pulls if the image isn't present on disk. Container will fail if the image isn't present and the pull fails.
PullIfNotPresent PullPolicy = "IfNotPresent"
)
// PreemptionPolicy describes a policy for if/when to preempt a pod.
type PreemptionPolicy string
const (
// PreemptLowerPriority means that pod can preempt other pods with lower priority.
PreemptLowerPriority PreemptionPolicy = "PreemptLowerPriority"
// PreemptNever means that pod never preempts other pods with lower priority.
PreemptNever PreemptionPolicy = "Never"
)
// TerminationMessagePolicy describes how termination messages are retrieved from a container.
type TerminationMessagePolicy string
const (
// TerminationMessageReadFile is the default behavior and will set the container status message to
// the contents of the container's terminationMessagePath when the container exits.
TerminationMessageReadFile TerminationMessagePolicy = "File"
// TerminationMessageFallbackToLogsOnError will read the most recent contents of the container logs
// for the container status message when the container exits with an error and the
// terminationMessagePath has no contents.
TerminationMessageFallbackToLogsOnError TerminationMessagePolicy = "FallbackToLogsOnError"
)
// Capability represent POSIX capabilities type
type Capability string
// Capabilities represent POSIX capabilities that can be added or removed to a running container.
type Capabilities struct {
// Added capabilities
// +optional
Add []Capability
// Removed capabilities
// +optional
Drop []Capability
}
// ResourceRequirements describes the compute resource requirements.
type ResourceRequirements struct {
// Limits describes the maximum amount of compute resources allowed.
// +optional
Limits ResourceList
// Requests describes the minimum amount of compute resources required.
// If Request is omitted for a container, it defaults to Limits if that is explicitly specified,
// otherwise to an implementation-defined value
// +optional
Requests ResourceList
}
// Container represents a single container that is expected to be run on the host.
type Container struct {
// Required: This must be a DNS_LABEL. Each container in a pod must
// have a unique name.
Name string
// Required.
Image string
// Optional: The docker image's entrypoint is used if this is not provided; cannot be updated.
// Variable references $(VAR_NAME) are expanded using the container's environment. If a variable
// cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax
// can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded,
// regardless of whether the variable exists or not.
// +optional
Command []string
// Optional: The docker image's cmd is used if this is not provided; cannot be updated.
// Variable references $(VAR_NAME) are expanded using the container's environment. If a variable
// cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax
// can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded,
// regardless of whether the variable exists or not.
// +optional
Args []string
// Optional: Defaults to Docker's default.
// +optional
WorkingDir string
// +optional
Ports []ContainerPort
// List of sources to populate environment variables in the container.
// The keys defined within a source must be a C_IDENTIFIER. All invalid keys
// will be reported as an event when the container is starting. When a key exists in multiple
// sources, the value associated with the last source will take precedence.
// Values defined by an Env with a duplicate key will take precedence.
// Cannot be updated.
// +optional
EnvFrom []EnvFromSource
// +optional
Env []EnvVar
// Compute resource requirements.
// +optional
Resources ResourceRequirements
// +optional
VolumeMounts []VolumeMount
// volumeDevices is the list of block devices to be used by the container.
// +optional
VolumeDevices []VolumeDevice
// +optional
LivenessProbe *Probe
// +optional
ReadinessProbe *Probe
// +optional
StartupProbe *Probe
// +optional
Lifecycle *Lifecycle
// Required.
// +optional
TerminationMessagePath string
// +optional
TerminationMessagePolicy TerminationMessagePolicy
// Required: Policy for pulling images for this container
ImagePullPolicy PullPolicy
// Optional: SecurityContext defines the security options the container should be run with.
// If set, the fields of SecurityContext override the equivalent fields of PodSecurityContext.
// +optional
SecurityContext *SecurityContext
// Variables for interactive containers, these have very specialized use-cases (e.g. debugging)
// and shouldn't be used for general purpose containers.
// +optional
Stdin bool
// +optional
StdinOnce bool
// +optional
TTY bool
}
// Handler defines a specific action that should be taken
// TODO: pass structured data to these actions, and document that data here.
type Handler struct {
// One and only one of the following should be specified.
// Exec specifies the action to take.
// +optional
Exec *ExecAction
// HTTPGet specifies the http request to perform.
// +optional
HTTPGet *HTTPGetAction
// TCPSocket specifies an action involving a TCP port.
// TODO: implement a realistic TCP lifecycle hook
// +optional
TCPSocket *TCPSocketAction
}
// Lifecycle describes actions that the management system should take in response to container lifecycle
// events. For the PostStart and PreStop lifecycle handlers, management of the container blocks
// until the action is complete, unless the container process fails, in which case the handler is aborted.
type Lifecycle struct {
// PostStart is called immediately after a container is created. If the handler fails, the container
// is terminated and restarted.
// +optional
PostStart *Handler
// PreStop is called immediately before a container is terminated due to an
// API request or management event such as liveness/startup probe failure,
// preemption, resource contention, etc. The handler is not called if the
// container crashes or exits. The reason for termination is passed to the
// handler. The Pod's termination grace period countdown begins before the
// PreStop hooked is executed. Regardless of the outcome of the handler, the
// container will eventually terminate within the Pod's termination grace
// period. Other management of the container blocks until the hook completes
// or until the termination grace period is reached.
// +optional
PreStop *Handler
}
// The below types are used by kube_client and api_server.
// ConditionStatus defines conditions of resources
type ConditionStatus string
// These are valid condition statuses. "ConditionTrue" means a resource is in the condition;
// "ConditionFalse" means a resource is not in the condition; "ConditionUnknown" means kubernetes
// can't decide if a resource is in the condition or not. In the future, we could add other
// intermediate conditions, e.g. ConditionDegraded.
const (
ConditionTrue ConditionStatus = "True"
ConditionFalse ConditionStatus = "False"
ConditionUnknown ConditionStatus = "Unknown"
)
// ContainerStateWaiting represents the waiting state of a container
type ContainerStateWaiting struct {
// A brief CamelCase string indicating details about why the container is in waiting state.
// +optional
Reason string
// A human-readable message indicating details about why the container is in waiting state.
// +optional
Message string
}
// ContainerStateRunning represents the running state of a container
type ContainerStateRunning struct {
// +optional
StartedAt metav1.Time
}
// ContainerStateTerminated represents the terminated state of a container
type ContainerStateTerminated struct {
ExitCode int32
// +optional
Signal int32
// +optional
Reason string
// +optional
Message string
// +optional
StartedAt metav1.Time
// +optional
FinishedAt metav1.Time
// +optional
ContainerID string
}
// ContainerState holds a possible state of container.
// Only one of its members may be specified.
// If none of them is specified, the default one is ContainerStateWaiting.
type ContainerState struct {
// +optional
Waiting *ContainerStateWaiting
// +optional
Running *ContainerStateRunning
// +optional
Terminated *ContainerStateTerminated
}
// ContainerStatus represents the status of a container
type ContainerStatus struct {
// Each container in a pod must have a unique name.
Name string
// +optional
State ContainerState
// +optional
LastTerminationState ContainerState
// Ready specifies whether the container has passed its readiness check.
Ready bool
// Note that this is calculated from dead containers. But those containers are subject to
// garbage collection. This value will get capped at 5 by GC.
RestartCount int32
Image string
ImageID string
// +optional
ContainerID string
Started *bool
}
// PodPhase is a label for the condition of a pod at the current time.
type PodPhase string
// These are the valid statuses of pods.
const (
// PodPending means the pod has been accepted by the system, but one or more of the containers
// has not been started. This includes time before being bound to a node, as well as time spent
// pulling images onto the host.
PodPending PodPhase = "Pending"
// PodRunning means the pod has been bound to a node and all of the containers have been started.
// At least one container is still running or is in the process of being restarted.
PodRunning PodPhase = "Running"
// PodSucceeded means that all containers in the pod have voluntarily terminated
// with a container exit code of 0, and the system is not going to restart any of these containers.
PodSucceeded PodPhase = "Succeeded"
// PodFailed means that all containers in the pod have terminated, and at least one container has
// terminated in a failure (exited with a non-zero exit code or was stopped by the system).
PodFailed PodPhase = "Failed"
// PodUnknown means that for some reason the state of the pod could not be obtained, typically due
// to an error in communicating with the host of the pod.
PodUnknown PodPhase = "Unknown"
)
// PodConditionType defines the condition of pod
type PodConditionType string
// These are valid conditions of pod.
const (
// PodScheduled represents status of the scheduling process for this pod.
PodScheduled PodConditionType = "PodScheduled"
// PodReady means the pod is able to service requests and should be added to the
// load balancing pools of all matching services.
PodReady PodConditionType = "Ready"
// PodInitialized means that all init containers in the pod have started successfully.
PodInitialized PodConditionType = "Initialized"
// PodReasonUnschedulable reason in PodScheduled PodCondition means that the scheduler
// can't schedule the pod right now, for example due to insufficient resources in the cluster.
PodReasonUnschedulable = "Unschedulable"
// ContainersReady indicates whether all containers in the pod are ready.
ContainersReady PodConditionType = "ContainersReady"
)
// PodCondition represents pod's condition
type PodCondition struct {
Type PodConditionType
Status ConditionStatus
// +optional
LastProbeTime metav1.Time
// +optional
LastTransitionTime metav1.Time
// +optional
Reason string
// +optional
Message string
}
// RestartPolicy describes how the container should be restarted.
// Only one of the following restart policies may be specified.
// If none of the following policies is specified, the default one
// is RestartPolicyAlways.
type RestartPolicy string
// These are valid restart policies
const (
RestartPolicyAlways RestartPolicy = "Always"
RestartPolicyOnFailure RestartPolicy = "OnFailure"
RestartPolicyNever RestartPolicy = "Never"
)
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodList is a list of Pods.
type PodList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []Pod
}
// DNSPolicy defines how a pod's DNS will be configured.
type DNSPolicy string
const (
// DNSClusterFirstWithHostNet indicates that the pod should use cluster DNS
// first, if it is available, then fall back on the default
// (as determined by kubelet) DNS settings.
DNSClusterFirstWithHostNet DNSPolicy = "ClusterFirstWithHostNet"
// DNSClusterFirst indicates that the pod should use cluster DNS
// first unless hostNetwork is true, if it is available, then
// fall back on the default (as determined by kubelet) DNS settings.
DNSClusterFirst DNSPolicy = "ClusterFirst"
// DNSDefault indicates that the pod should use the default (as
// determined by kubelet) DNS settings.
DNSDefault DNSPolicy = "Default"
// DNSNone indicates that the pod should use empty DNS settings. DNS
// parameters such as nameservers and search paths should be defined via
// DNSConfig.
DNSNone DNSPolicy = "None"
)
// NodeSelector represents the union of the results of one or more label queries
// over a set of nodes; that is, it represents the OR of the selectors represented
// by the node selector terms.
type NodeSelector struct {
//Required. A list of node selector terms. The terms are ORed.
NodeSelectorTerms []NodeSelectorTerm
}
// NodeSelectorTerm represents expressions and fields required to select nodes.
// A null or empty node selector term matches no objects. The requirements of
// them are ANDed.
// The TopologySelectorTerm type implements a subset of the NodeSelectorTerm.
type NodeSelectorTerm struct {
// A list of node selector requirements by node's labels.
MatchExpressions []NodeSelectorRequirement
// A list of node selector requirements by node's fields.
MatchFields []NodeSelectorRequirement
}
// NodeSelectorRequirement is a selector that contains values, a key, and an operator
// that relates the key and values.
type NodeSelectorRequirement struct {
// The label key that the selector applies to.
Key string
// Represents a key's relationship to a set of values.
// Valid operators are In, NotIn, Exists, DoesNotExist. Gt, and Lt.
Operator NodeSelectorOperator
// An array of string values. If the operator is In or NotIn,
// the values array must be non-empty. If the operator is Exists or DoesNotExist,
// the values array must be empty. If the operator is Gt or Lt, the values
// array must have a single element, which will be interpreted as an integer.
// This array is replaced during a strategic merge patch.
// +optional
Values []string
}
// NodeSelectorOperator is the set of operators that can be used in
// a node selector requirement.
type NodeSelectorOperator string
// These are valid values of NodeSelectorOperator
const (
NodeSelectorOpIn NodeSelectorOperator = "In"
NodeSelectorOpNotIn NodeSelectorOperator = "NotIn"
NodeSelectorOpExists NodeSelectorOperator = "Exists"
NodeSelectorOpDoesNotExist NodeSelectorOperator = "DoesNotExist"
NodeSelectorOpGt NodeSelectorOperator = "Gt"
NodeSelectorOpLt NodeSelectorOperator = "Lt"
)
// TopologySelectorTerm represents the result of label queries.
// A null or empty topology selector term matches no objects.
// The requirements of them are ANDed.
// It provides a subset of functionality as NodeSelectorTerm.
// This is an alpha feature and may change in the future.
type TopologySelectorTerm struct {
// A list of topology selector requirements by labels.
// +optional
MatchLabelExpressions []TopologySelectorLabelRequirement
}
// TopologySelectorLabelRequirement is a selector that matches given label.
// This is an alpha feature and may change in the future.
type TopologySelectorLabelRequirement struct {
// The label key that the selector applies to.
Key string
// An array of string values. One value must match the label to be selected.
// Each entry in Values is ORed.
Values []string
}
// Affinity is a group of affinity scheduling rules.
type Affinity struct {
// Describes node affinity scheduling rules for the pod.
// +optional
NodeAffinity *NodeAffinity
// Describes pod affinity scheduling rules (e.g. co-locate this pod in the same node, zone, etc. as some other pod(s)).
// +optional
PodAffinity *PodAffinity
// Describes pod anti-affinity scheduling rules (e.g. avoid putting this pod in the same node, zone, etc. as some other pod(s)).
// +optional
PodAntiAffinity *PodAntiAffinity
}
// PodAffinity is a group of inter pod affinity scheduling rules.
type PodAffinity struct {
// NOT YET IMPLEMENTED. TODO: Uncomment field once it is implemented.
// If the affinity requirements specified by this field are not met at
// scheduling time, the pod will not be scheduled onto the node.
// If the affinity requirements specified by this field cease to be met
// at some point during pod execution (e.g. due to a pod label update), the
// system will try to eventually evict the pod from its node.
// When there are multiple elements, the lists of nodes corresponding to each
// podAffinityTerm are intersected, i.e. all terms must be satisfied.
// +optional
// RequiredDuringSchedulingRequiredDuringExecution []PodAffinityTerm
// If the affinity requirements specified by this field are not met at
// scheduling time, the pod will not be scheduled onto the node.
// If the affinity requirements specified by this field cease to be met
// at some point during pod execution (e.g. due to a pod label update), the
// system may or may not try to eventually evict the pod from its node.
// When there are multiple elements, the lists of nodes corresponding to each
// podAffinityTerm are intersected, i.e. all terms must be satisfied.
// +optional
RequiredDuringSchedulingIgnoredDuringExecution []PodAffinityTerm
// The scheduler will prefer to schedule pods to nodes that satisfy
// the affinity expressions specified by this field, but it may choose
// a node that violates one or more of the expressions. The node that is
// most preferred is the one with the greatest sum of weights, i.e.
// for each node that meets all of the scheduling requirements (resource
// request, requiredDuringScheduling affinity expressions, etc.),
// compute a sum by iterating through the elements of this field and adding
// "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the
// node(s) with the highest sum are the most preferred.
// +optional
PreferredDuringSchedulingIgnoredDuringExecution []WeightedPodAffinityTerm
}
// PodAntiAffinity is a group of inter pod anti affinity scheduling rules.
type PodAntiAffinity struct {
// NOT YET IMPLEMENTED. TODO: Uncomment field once it is implemented.
// If the anti-affinity requirements specified by this field are not met at
// scheduling time, the pod will not be scheduled onto the node.
// If the anti-affinity requirements specified by this field cease to be met
// at some point during pod execution (e.g. due to a pod label update), the
// system will try to eventually evict the pod from its node.
// When there are multiple elements, the lists of nodes corresponding to each
// podAffinityTerm are intersected, i.e. all terms must be satisfied.
// +optional
// RequiredDuringSchedulingRequiredDuringExecution []PodAffinityTerm
// If the anti-affinity requirements specified by this field are not met at
// scheduling time, the pod will not be scheduled onto the node.
// If the anti-affinity requirements specified by this field cease to be met
// at some point during pod execution (e.g. due to a pod label update), the
// system may or may not try to eventually evict the pod from its node.
// When there are multiple elements, the lists of nodes corresponding to each
// podAffinityTerm are intersected, i.e. all terms must be satisfied.
// +optional
RequiredDuringSchedulingIgnoredDuringExecution []PodAffinityTerm
// The scheduler will prefer to schedule pods to nodes that satisfy
// the anti-affinity expressions specified by this field, but it may choose
// a node that violates one or more of the expressions. The node that is
// most preferred is the one with the greatest sum of weights, i.e.
// for each node that meets all of the scheduling requirements (resource
// request, requiredDuringScheduling anti-affinity expressions, etc.),
// compute a sum by iterating through the elements of this field and adding
// "weight" to the sum if the node has pods which matches the corresponding podAffinityTerm; the
// node(s) with the highest sum are the most preferred.
// +optional
PreferredDuringSchedulingIgnoredDuringExecution []WeightedPodAffinityTerm
}
// WeightedPodAffinityTerm represents the weights of all of the matched WeightedPodAffinityTerm
// fields are added per-node to find the most preferred node(s)
type WeightedPodAffinityTerm struct {
// weight associated with matching the corresponding podAffinityTerm,
// in the range 1-100.
Weight int32
// Required. A pod affinity term, associated with the corresponding weight.
PodAffinityTerm PodAffinityTerm
}
// PodAffinityTerm defines a set of pods (namely those matching the labelSelector
// relative to the given namespace(s)) that this pod should be
// co-located (affinity) or not co-located (anti-affinity) with,
// where co-located is defined as running on a node whose value of
// the label with key <topologyKey> matches that of any node on which
// a pod of the set of pods is running.
type PodAffinityTerm struct {
// A label query over a set of resources, in this case pods.
// +optional
LabelSelector *metav1.LabelSelector
// namespaces specifies which namespaces the labelSelector applies to (matches against);
// null or empty list means "this pod's namespace"
// +optional
Namespaces []string
// This pod should be co-located (affinity) or not co-located (anti-affinity) with the pods matching
// the labelSelector in the specified namespaces, where co-located is defined as running on a node
// whose value of the label with key topologyKey matches that of any node on which any of the
// selected pods is running.
// Empty topologyKey is not allowed.
TopologyKey string
}
// NodeAffinity is a group of node affinity scheduling rules.
type NodeAffinity struct {
// NOT YET IMPLEMENTED. TODO: Uncomment field once it is implemented.
// If the affinity requirements specified by this field are not met at
// scheduling time, the pod will not be scheduled onto the node.
// If the affinity requirements specified by this field cease to be met
// at some point during pod execution (e.g. due to an update), the system
// will try to eventually evict the pod from its node.
// +optional
// RequiredDuringSchedulingRequiredDuringExecution *NodeSelector
// If the affinity requirements specified by this field are not met at
// scheduling time, the pod will not be scheduled onto the node.
// If the affinity requirements specified by this field cease to be met
// at some point during pod execution (e.g. due to an update), the system
// may or may not try to eventually evict the pod from its node.
// +optional
RequiredDuringSchedulingIgnoredDuringExecution *NodeSelector
// The scheduler will prefer to schedule pods to nodes that satisfy
// the affinity expressions specified by this field, but it may choose
// a node that violates one or more of the expressions. The node that is
// most preferred is the one with the greatest sum of weights, i.e.
// for each node that meets all of the scheduling requirements (resource
// request, requiredDuringScheduling affinity expressions, etc.),
// compute a sum by iterating through the elements of this field and adding
// "weight" to the sum if the node matches the corresponding matchExpressions; the
// node(s) with the highest sum are the most preferred.
// +optional
PreferredDuringSchedulingIgnoredDuringExecution []PreferredSchedulingTerm
}
// PreferredSchedulingTerm represents an empty preferred scheduling term matches all objects with implicit weight 0
// (i.e. it's a no-op). A null preferred scheduling term matches no objects (i.e. is also a no-op).
type PreferredSchedulingTerm struct {
// Weight associated with matching the corresponding nodeSelectorTerm, in the range 1-100.
Weight int32
// A node selector term, associated with the corresponding weight.
Preference NodeSelectorTerm
}
// Taint represents taint that can be applied to the node.
// The node this Taint is attached to has the "effect" on
// any pod that does not tolerate the Taint.
type Taint struct {
// Required. The taint key to be applied to a node.
Key string
// Required. The taint value corresponding to the taint key.
// +optional
Value string
// Required. The effect of the taint on pods
// that do not tolerate the taint.
// Valid effects are NoSchedule, PreferNoSchedule and NoExecute.
Effect TaintEffect
// TimeAdded represents the time at which the taint was added.
// It is only written for NoExecute taints.
// +optional
TimeAdded *metav1.Time
}
// TaintEffect defines the effects of Taint
type TaintEffect string
// These are valid values for TaintEffect
const (
// Do not allow new pods to schedule onto the node unless they tolerate the taint,
// but allow all pods submitted to Kubelet without going through the scheduler
// to start, and allow all already-running pods to continue running.
// Enforced by the scheduler.
TaintEffectNoSchedule TaintEffect = "NoSchedule"
// Like TaintEffectNoSchedule, but the scheduler tries not to schedule
// new pods onto the node, rather than prohibiting new pods from scheduling
// onto the node entirely. Enforced by the scheduler.
TaintEffectPreferNoSchedule TaintEffect = "PreferNoSchedule"
// NOT YET IMPLEMENTED. TODO: Uncomment field once it is implemented.
// Like TaintEffectNoSchedule, but additionally do not allow pods submitted to
// Kubelet without going through the scheduler to start.
// Enforced by Kubelet and the scheduler.
// TaintEffectNoScheduleNoAdmit TaintEffect = "NoScheduleNoAdmit"
// Evict any already-running pods that do not tolerate the taint.
// Currently enforced by NodeController.
TaintEffectNoExecute TaintEffect = "NoExecute"
)
// Toleration represents the toleration object that can be attached to a pod.
// The pod this Toleration is attached to tolerates any taint that matches
// the triple <key,value,effect> using the matching operator <operator>.
type Toleration struct {
// Key is the taint key that the toleration applies to. Empty means match all taint keys.
// If the key is empty, operator must be Exists; this combination means to match all values and all keys.
// +optional
Key string
// Operator represents a key's relationship to the value.
// Valid operators are Exists and Equal. Defaults to Equal.
// Exists is equivalent to wildcard for value, so that a pod can
// tolerate all taints of a particular category.
// +optional
Operator TolerationOperator
// Value is the taint value the toleration matches to.
// If the operator is Exists, the value should be empty, otherwise just a regular string.
// +optional
Value string
// Effect indicates the taint effect to match. Empty means match all taint effects.
// When specified, allowed values are NoSchedule, PreferNoSchedule and NoExecute.
// +optional
Effect TaintEffect
// TolerationSeconds represents the period of time the toleration (which must be
// of effect NoExecute, otherwise this field is ignored) tolerates the taint. By default,
// it is not set, which means tolerate the taint forever (do not evict). Zero and
// negative values will be treated as 0 (evict immediately) by the system.
// +optional
TolerationSeconds *int64
}
// TolerationOperator is the set of operators that can be used in a toleration.
type TolerationOperator string
// These are valid values for TolerationOperator
const (
TolerationOpExists TolerationOperator = "Exists"
TolerationOpEqual TolerationOperator = "Equal"
)
// PodReadinessGate contains the reference to a pod condition
type PodReadinessGate struct {
// ConditionType refers to a condition in the pod's condition list with matching type.
ConditionType PodConditionType
}
// PodSpec is a description of a pod
type PodSpec struct {
Volumes []Volume
// List of initialization containers belonging to the pod.
InitContainers []Container
// List of containers belonging to the pod.
Containers []Container
// List of ephemeral containers run in this pod. Ephemeral containers may be run in an existing
// pod to perform user-initiated actions such as debugging. This list cannot be specified when
// creating a pod, and it cannot be modified by updating the pod spec. In order to add an
// ephemeral container to an existing pod, use the pod's ephemeralcontainers subresource.
// This field is alpha-level and is only honored by servers that enable the EphemeralContainers feature.
// +optional
EphemeralContainers []EphemeralContainer
// +optional
RestartPolicy RestartPolicy
// Optional duration in seconds the pod needs to terminate gracefully. May be decreased in delete request.
// Value must be non-negative integer. The value zero indicates delete immediately.
// If this value is nil, the default grace period will be used instead.
// The grace period is the duration in seconds after the processes running in the pod are sent
// a termination signal and the time when the processes are forcibly halted with a kill signal.
// Set this value longer than the expected cleanup time for your process.
// +optional
TerminationGracePeriodSeconds *int64
// Optional duration in seconds relative to the StartTime that the pod may be active on a node
// before the system actively tries to terminate the pod; value must be positive integer
// +optional
ActiveDeadlineSeconds *int64
// Set DNS policy for the pod.
// Defaults to "ClusterFirst".
// Valid values are 'ClusterFirstWithHostNet', 'ClusterFirst', 'Default' or 'None'.
// DNS parameters given in DNSConfig will be merged with the policy selected with DNSPolicy.
// To have DNS options set along with hostNetwork, you have to specify DNS policy
// explicitly to 'ClusterFirstWithHostNet'.
// +optional
DNSPolicy DNSPolicy
// NodeSelector is a selector which must be true for the pod to fit on a node
// +optional
NodeSelector map[string]string
// ServiceAccountName is the name of the ServiceAccount to use to run this pod
// The pod will be allowed to use secrets referenced by the ServiceAccount
ServiceAccountName string
// AutomountServiceAccountToken indicates whether a service account token should be automatically mounted.
// +optional
AutomountServiceAccountToken *bool
// NodeName is a request to schedule this pod onto a specific node. If it is non-empty,
// the scheduler simply schedules this pod onto that node, assuming that it fits resource
// requirements.
// +optional
NodeName string
// SecurityContext holds pod-level security attributes and common container settings.
// Optional: Defaults to empty. See type description for default values of each field.
// +optional
SecurityContext *PodSecurityContext
// ImagePullSecrets is an optional list of references to secrets in the same namespace to use for pulling any of the images used by this PodSpec.
// If specified, these secrets will be passed to individual puller implementations for them to use. For example,
// in the case of docker, only DockerConfig type secrets are honored.
// +optional
ImagePullSecrets []LocalObjectReference
// Specifies the hostname of the Pod.
// If not specified, the pod's hostname will be set to a system-defined value.
// +optional
Hostname string
// If specified, the fully qualified Pod hostname will be "<hostname>.<subdomain>.<pod namespace>.svc.<cluster domain>".
// If not specified, the pod will not have a domainname at all.
// +optional
Subdomain string
// If true the pod's hostname will be configured as the pod's FQDN, rather than the leaf name (the default).
// In Linux containers, this means setting the FQDN in the hostname field of the kernel (the nodename field of struct utsname).
// In Windows containers, this means setting the registry value of hostname for the registry key HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Services\\Tcpip\\Parameters to FQDN.
// If a pod does not have FQDN, this has no effect.
// +optional
SetHostnameAsFQDN *bool
// If specified, the pod's scheduling constraints
// +optional
Affinity *Affinity
// If specified, the pod will be dispatched by specified scheduler.
// If not specified, the pod will be dispatched by default scheduler.
// +optional
SchedulerName string
// If specified, the pod's tolerations.
// +optional
Tolerations []Toleration
// HostAliases is an optional list of hosts and IPs that will be injected into the pod's hosts
// file if specified. This is only valid for non-hostNetwork pods.
// +optional
HostAliases []HostAlias
// If specified, indicates the pod's priority. "system-node-critical" and
// "system-cluster-critical" are two special keywords which indicate the
// highest priorities with the former being the highest priority. Any other
// name must be defined by creating a PriorityClass object with that name.
// If not specified, the pod priority will be default or zero if there is no
// default.
// +optional
PriorityClassName string
// The priority value. Various system components use this field to find the
// priority of the pod. When Priority Admission Controller is enabled, it
// prevents users from setting this field. The admission controller populates
// this field from PriorityClassName.
// The higher the value, the higher the priority.
// +optional
Priority *int32
// PreemptionPolicy is the Policy for preempting pods with lower priority.
// One of Never, PreemptLowerPriority.
// Defaults to PreemptLowerPriority if unset.
// This field is beta-level, gated by the NonPreemptingPriority feature-gate.
// +optional
PreemptionPolicy *PreemptionPolicy
// Specifies the DNS parameters of a pod.
// Parameters specified here will be merged to the generated DNS
// configuration based on DNSPolicy.
// +optional
DNSConfig *PodDNSConfig
// If specified, all readiness gates will be evaluated for pod readiness.
// A pod is ready when all its containers are ready AND
// all conditions specified in the readiness gates have status equal to "True"
// More info: https://git.k8s.io/enhancements/keps/sig-network/0007-pod-ready%2B%2B.md
// +optional
ReadinessGates []PodReadinessGate
// RuntimeClassName refers to a RuntimeClass object in the node.k8s.io group, which should be used
// to run this pod. If no RuntimeClass resource matches the named class, the pod will not be run.
// If unset or empty, the "legacy" RuntimeClass will be used, which is an implicit class with an
// empty definition that uses the default runtime handler.
// More info: https://git.k8s.io/enhancements/keps/sig-node/585-runtime-class/README.md
// +optional
RuntimeClassName *string
// Overhead represents the resource overhead associated with running a pod for a given RuntimeClass.
// This field will be autopopulated at admission time by the RuntimeClass admission controller. If
// the RuntimeClass admission controller is enabled, overhead must not be set in Pod create requests.
// The RuntimeClass admission controller will reject Pod create requests which have the overhead already
// set. If RuntimeClass is configured and selected in the PodSpec, Overhead will be set to the value
// defined in the corresponding RuntimeClass, otherwise it will remain unset and treated as zero.
// More info: https://git.k8s.io/enhancements/keps/sig-node/20190226-pod-overhead.md
// This field is alpha-level as of Kubernetes v1.16, and is only honored by servers that enable the PodOverhead feature.
// +optional
Overhead ResourceList
// EnableServiceLinks indicates whether information about services should be injected into pod's
// environment variables, matching the syntax of Docker links.
// If not specified, the default is true.
// +optional
EnableServiceLinks *bool
// TopologySpreadConstraints describes how a group of pods ought to spread across topology
// domains. Scheduler will schedule pods in a way which abides by the constraints.
// All topologySpreadConstraints are ANDed.
// +optional
TopologySpreadConstraints []TopologySpreadConstraint
}
// HostAlias holds the mapping between IP and hostnames that will be injected as an entry in the
// pod's hosts file.
type HostAlias struct {
IP string
Hostnames []string
}
// Sysctl defines a kernel parameter to be set
type Sysctl struct {
// Name of a property to set
Name string
// Value of a property to set
Value string
}
// PodFSGroupChangePolicy holds policies that will be used for applying fsGroup to a volume
// when volume is mounted.
type PodFSGroupChangePolicy string
const (
// FSGroupChangeOnRootMismatch indicates that volume's ownership and permissions will be changed
// only when permission and ownership of root directory does not match with expected
// permissions on the volume. This can help shorten the time it takes to change
// ownership and permissions of a volume.
FSGroupChangeOnRootMismatch PodFSGroupChangePolicy = "OnRootMismatch"
// FSGroupChangeAlways indicates that volume's ownership and permissions
// should always be changed whenever volume is mounted inside a Pod. This the default
// behavior.
FSGroupChangeAlways PodFSGroupChangePolicy = "Always"
)
// PodSecurityContext holds pod-level security attributes and common container settings.
// Some fields are also present in container.securityContext. Field values of
// container.securityContext take precedence over field values of PodSecurityContext.
type PodSecurityContext struct {
// Use the host's network namespace. If this option is set, the ports that will be
// used must be specified.
// Optional: Default to false
// +k8s:conversion-gen=false
// +optional
HostNetwork bool
// Use the host's pid namespace.
// Optional: Default to false.
// +k8s:conversion-gen=false
// +optional
HostPID bool
// Use the host's ipc namespace.
// Optional: Default to false.
// +k8s:conversion-gen=false
// +optional
HostIPC bool
// Share a single process namespace between all of the containers in a pod.
// When this is set containers will be able to view and signal processes from other containers
// in the same pod, and the first process in each container will not be assigned PID 1.
// HostPID and ShareProcessNamespace cannot both be set.
// Optional: Default to false.
// +k8s:conversion-gen=false
// +optional
ShareProcessNamespace *bool
// The SELinux context to be applied to all containers.
// If unspecified, the container runtime will allocate a random SELinux context for each
// container. May also be set in SecurityContext. If set in
// both SecurityContext and PodSecurityContext, the value specified in SecurityContext
// takes precedence for that container.
// +optional
SELinuxOptions *SELinuxOptions
// The Windows specific settings applied to all containers.
// If unspecified, the options within a container's SecurityContext will be used.
// If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence.
// +optional
WindowsOptions *WindowsSecurityContextOptions
// The UID to run the entrypoint of the container process.
// Defaults to user specified in image metadata if unspecified.
// May also be set in SecurityContext. If set in both SecurityContext and
// PodSecurityContext, the value specified in SecurityContext takes precedence
// for that container.
// +optional
RunAsUser *int64
// The GID to run the entrypoint of the container process.
// Uses runtime default if unset.
// May also be set in SecurityContext. If set in both SecurityContext and
// PodSecurityContext, the value specified in SecurityContext takes precedence
// for that container.
// +optional
RunAsGroup *int64
// Indicates that the container must run as a non-root user.
// If true, the Kubelet will validate the image at runtime to ensure that it
// does not run as UID 0 (root) and fail to start the container if it does.
// If unset or false, no such validation will be performed.
// May also be set in SecurityContext. If set in both SecurityContext and
// PodSecurityContext, the value specified in SecurityContext takes precedence
// for that container.
// +optional
RunAsNonRoot *bool
// A list of groups applied to the first process run in each container, in addition
// to the container's primary GID. If unspecified, no groups will be added to
// any container.
// +optional
SupplementalGroups []int64
// A special supplemental group that applies to all containers in a pod.
// Some volume types allow the Kubelet to change the ownership of that volume
// to be owned by the pod:
//
// 1. The owning GID will be the FSGroup
// 2. The setgid bit is set (new files created in the volume will be owned by FSGroup)
// 3. The permission bits are OR'd with rw-rw----
//
// If unset, the Kubelet will not modify the ownership and permissions of any volume.
// +optional
FSGroup *int64
// fsGroupChangePolicy defines behavior of changing ownership and permission of the volume
// before being exposed inside Pod. This field will only apply to
// volume types which support fsGroup based ownership(and permissions).
// It will have no effect on ephemeral volume types such as: secret, configmaps
// and emptydir.
// Valid values are "OnRootMismatch" and "Always". If not specified, "Always" is used.
// +optional
FSGroupChangePolicy *PodFSGroupChangePolicy
// Sysctls hold a list of namespaced sysctls used for the pod. Pods with unsupported
// sysctls (by the container runtime) might fail to launch.
// +optional
Sysctls []Sysctl
// The seccomp options to use by the containers in this pod.
// +optional
SeccompProfile *SeccompProfile
}
// SeccompProfile defines a pod/container's seccomp profile settings.
// Only one profile source may be set.
// +union
type SeccompProfile struct {
// +unionDiscriminator
Type SeccompProfileType
// Load a profile defined in static file on the node.
// The profile must be preconfigured on the node to work.
// LocalhostProfile cannot be an absolute nor a descending path.
// +optional
LocalhostProfile *string
}
// SeccompProfileType defines the supported seccomp profile types.
type SeccompProfileType string
const (
// SeccompProfileTypeUnconfined is when no seccomp profile is applied (A.K.A. unconfined).
SeccompProfileTypeUnconfined SeccompProfileType = "Unconfined"
// SeccompProfileTypeRuntimeDefault represents the default container runtime seccomp profile.
SeccompProfileTypeRuntimeDefault SeccompProfileType = "RuntimeDefault"
// SeccompProfileTypeLocalhost represents custom made profiles stored on the node's disk.
SeccompProfileTypeLocalhost SeccompProfileType = "Localhost"
)
// PodQOSClass defines the supported qos classes of Pods.
type PodQOSClass string
// These are valid values for PodQOSClass
const (
// PodQOSGuaranteed is the Guaranteed qos class.
PodQOSGuaranteed PodQOSClass = "Guaranteed"
// PodQOSBurstable is the Burstable qos class.
PodQOSBurstable PodQOSClass = "Burstable"
// PodQOSBestEffort is the BestEffort qos class.
PodQOSBestEffort PodQOSClass = "BestEffort"
)
// PodDNSConfig defines the DNS parameters of a pod in addition to
// those generated from DNSPolicy.
type PodDNSConfig struct {
// A list of DNS name server IP addresses.
// This will be appended to the base nameservers generated from DNSPolicy.
// Duplicated nameservers will be removed.
// +optional
Nameservers []string
// A list of DNS search domains for host-name lookup.
// This will be appended to the base search paths generated from DNSPolicy.
// Duplicated search paths will be removed.
// +optional
Searches []string
// A list of DNS resolver options.
// This will be merged with the base options generated from DNSPolicy.
// Duplicated entries will be removed. Resolution options given in Options
// will override those that appear in the base DNSPolicy.
// +optional
Options []PodDNSConfigOption
}
// PodDNSConfigOption defines DNS resolver options of a pod.
type PodDNSConfigOption struct {
// Required.
Name string
// +optional
Value *string
}
// PodIP represents the IP address of a pod.
// IP address information. Each entry includes:
// IP: An IP address allocated to the pod. Routable at least within
// the cluster.
type PodIP struct {
IP string
}
// EphemeralContainerCommon is a copy of all fields in Container to be inlined in
// EphemeralContainer. This separate type allows easy conversion from EphemeralContainer
// to Container and allows separate documentation for the fields of EphemeralContainer.
// When a new field is added to Container it must be added here as well.
type EphemeralContainerCommon struct {
// Required: This must be a DNS_LABEL. Each container in a pod must
// have a unique name.
Name string
// Required.
Image string
// Optional: The docker image's entrypoint is used if this is not provided; cannot be updated.
// Variable references $(VAR_NAME) are expanded using the container's environment. If a variable
// cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax
// can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded,
// regardless of whether the variable exists or not.
// +optional
Command []string
// Optional: The docker image's cmd is used if this is not provided; cannot be updated.
// Variable references $(VAR_NAME) are expanded using the container's environment. If a variable
// cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax
// can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded,
// regardless of whether the variable exists or not.
// +optional
Args []string
// Optional: Defaults to Docker's default.
// +optional
WorkingDir string
// Ports are not allowed for ephemeral containers.
// +optional
Ports []ContainerPort
// List of sources to populate environment variables in the container.
// The keys defined within a source must be a C_IDENTIFIER. All invalid keys
// will be reported as an event when the container is starting. When a key exists in multiple
// sources, the value associated with the last source will take precedence.
// Values defined by an Env with a duplicate key will take precedence.
// Cannot be updated.
// +optional
EnvFrom []EnvFromSource
// +optional
Env []EnvVar
// Resources are not allowed for ephemeral containers. Ephemeral containers use spare resources
// already allocated to the pod.
// +optional
Resources ResourceRequirements
// +optional
VolumeMounts []VolumeMount
// volumeDevices is the list of block devices to be used by the container.
// +optional
VolumeDevices []VolumeDevice
// Probes are not allowed for ephemeral containers.
// +optional
LivenessProbe *Probe
// Probes are not allowed for ephemeral containers.
// +optional
ReadinessProbe *Probe
// Probes are not allowed for ephemeral containers.
// +optional
StartupProbe *Probe
// Lifecycle is not allowed for ephemeral containers.
// +optional
Lifecycle *Lifecycle
// Required.
// +optional
TerminationMessagePath string
// +optional
TerminationMessagePolicy TerminationMessagePolicy
// Required: Policy for pulling images for this container
ImagePullPolicy PullPolicy
// SecurityContext is not allowed for ephemeral containers.
// +optional
SecurityContext *SecurityContext
// Variables for interactive containers, these have very specialized use-cases (e.g. debugging)
// and shouldn't be used for general purpose containers.
// +optional
Stdin bool
// +optional
StdinOnce bool
// +optional
TTY bool
}
// EphemeralContainerCommon converts to Container. All fields must be kept in sync between
// these two types.
var _ = Container(EphemeralContainerCommon{})
// An EphemeralContainer is a temporary container that may be added to an existing pod for
// user-initiated activities such as debugging. Ephemeral containers have no resource or
// scheduling guarantees, and they will not be restarted when they exit or when a pod is
// removed or restarted. If an ephemeral container causes a pod to exceed its resource
// allocation, the pod may be evicted.
// Ephemeral containers may not be added by directly updating the pod spec. They must be added
// via the pod's ephemeralcontainers subresource, and they will appear in the pod spec
// once added.
// This is an alpha feature enabled by the EphemeralContainers feature flag.
type EphemeralContainer struct {
// Ephemeral containers have all of the fields of Container, plus additional fields
// specific to ephemeral containers. Fields in common with Container are in the
// following inlined struct so than an EphemeralContainer may easily be converted
// to a Container.
EphemeralContainerCommon
// If set, the name of the container from PodSpec that this ephemeral container targets.
// The ephemeral container will be run in the namespaces (IPC, PID, etc) of this container.
// If not set then the ephemeral container is run in whatever namespaces are shared
// for the pod. Note that the container runtime must support this feature.
// +optional
TargetContainerName string
}
// PodStatus represents information about the status of a pod. Status may trail the actual
// state of a system.
type PodStatus struct {
// +optional
Phase PodPhase
// +optional
Conditions []PodCondition
// A human readable message indicating details about why the pod is in this state.
// +optional
Message string
// A brief CamelCase message indicating details about why the pod is in this state. e.g. 'Evicted'
// +optional
Reason string
// nominatedNodeName is set when this pod preempts other pods on the node, but it cannot be
// scheduled right away as preemption victims receive their graceful termination periods.
// This field does not guarantee that the pod will be scheduled on this node. Scheduler may decide
// to place the pod elsewhere if other nodes become available sooner. Scheduler may also decide to
// give the resources on this node to a higher priority pod that is created after preemption.
// +optional
NominatedNodeName string
// +optional
HostIP string
// PodIPs holds all of the known IP addresses allocated to the pod. Pods may be assigned AT MOST
// one value for each of IPv4 and IPv6.
// +optional
PodIPs []PodIP
// Date and time at which the object was acknowledged by the Kubelet.
// This is before the Kubelet pulled the container image(s) for the pod.
// +optional
StartTime *metav1.Time
// +optional
QOSClass PodQOSClass
// The list has one entry per init container in the manifest. The most recent successful
// init container will have ready = true, the most recently started container will have
// startTime set.
// More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-and-container-status
InitContainerStatuses []ContainerStatus
// The list has one entry per container in the manifest. Each entry is
// currently the output of `docker inspect`. This output format is *not*
// final and should not be relied upon.
// TODO: Make real decisions about what our info should look like. Re-enable fuzz test
// when we have done this.
// +optional
ContainerStatuses []ContainerStatus
// Status for any ephemeral containers that have run in this pod.
// This field is alpha-level and is only honored by servers that enable the EphemeralContainers feature.
// +optional
EphemeralContainerStatuses []ContainerStatus
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodStatusResult is a wrapper for PodStatus returned by kubelet that can be encode/decoded
type PodStatusResult struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Status represents the current information about a pod. This data may not be up
// to date.
// +optional
Status PodStatus
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Pod is a collection of containers, used as either input (create, update) or as output (list, get).
type Pod struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Spec defines the behavior of a pod.
// +optional
Spec PodSpec
// Status represents the current information about a pod. This data may not be up
// to date.
// +optional
Status PodStatus
}
// PodTemplateSpec describes the data a pod should have when created from a template
type PodTemplateSpec struct {
// Metadata of the pods created from this template.
// +optional
metav1.ObjectMeta
// Spec defines the behavior of a pod.
// +optional
Spec PodSpec
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodTemplate describes a template for creating copies of a predefined pod.
type PodTemplate struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Template defines the pods that will be created from this pod template
// +optional
Template PodTemplateSpec
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodTemplateList is a list of PodTemplates.
type PodTemplateList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []PodTemplate
}
// ReplicationControllerSpec is the specification of a replication controller.
// As the internal representation of a replication controller, it may have either
// a TemplateRef or a Template set.
type ReplicationControllerSpec struct {
// Replicas is the number of desired replicas.
Replicas int32
// Minimum number of seconds for which a newly created pod should be ready
// without any of its container crashing, for it to be considered available.
// Defaults to 0 (pod will be considered available as soon as it is ready)
// +optional
MinReadySeconds int32
// Selector is a label query over pods that should match the Replicas count.
Selector map[string]string
// TemplateRef is a reference to an object that describes the pod that will be created if
// insufficient replicas are detected. This reference is ignored if a Template is set.
// Must be set before converting to a versioned API object
// +optional
//TemplateRef *ObjectReference
// Template is the object that describes the pod that will be created if
// insufficient replicas are detected. Internally, this takes precedence over a
// TemplateRef.
// +optional
Template *PodTemplateSpec
}
// ReplicationControllerStatus represents the current status of a replication
// controller.
type ReplicationControllerStatus struct {
// Replicas is the number of actual replicas.
Replicas int32
// The number of pods that have labels matching the labels of the pod template of the replication controller.
// +optional
FullyLabeledReplicas int32
// The number of ready replicas for this replication controller.
// +optional
ReadyReplicas int32
// The number of available replicas (ready for at least minReadySeconds) for this replication controller.
// +optional
AvailableReplicas int32
// ObservedGeneration is the most recent generation observed by the controller.
// +optional
ObservedGeneration int64
// Represents the latest available observations of a replication controller's current state.
// +optional
Conditions []ReplicationControllerCondition
}
// ReplicationControllerConditionType defines the conditions of a replication controller.
type ReplicationControllerConditionType string
// These are valid conditions of a replication controller.
const (
// ReplicationControllerReplicaFailure is added in a replication controller when one of its pods
// fails to be created due to insufficient quota, limit ranges, pod security policy, node selectors,
// etc. or deleted due to kubelet being down or finalizers are failing.
ReplicationControllerReplicaFailure ReplicationControllerConditionType = "ReplicaFailure"
)
// ReplicationControllerCondition describes the state of a replication controller at a certain point.
type ReplicationControllerCondition struct {
// Type of replication controller condition.
Type ReplicationControllerConditionType
// Status of the condition, one of True, False, Unknown.
Status ConditionStatus
// The last time the condition transitioned from one status to another.
// +optional
LastTransitionTime metav1.Time
// The reason for the condition's last transition.
// +optional
Reason string
// A human readable message indicating details about the transition.
// +optional
Message string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ReplicationController represents the configuration of a replication controller.
type ReplicationController struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Spec defines the desired behavior of this replication controller.
// +optional
Spec ReplicationControllerSpec
// Status is the current status of this replication controller. This data may be
// out of date by some window of time.
// +optional
Status ReplicationControllerStatus
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ReplicationControllerList is a collection of replication controllers.
type ReplicationControllerList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []ReplicationController
}
const (
// ClusterIPNone - do not assign a cluster IP
// no proxying required and no environment variables should be created for pods
ClusterIPNone = "None"
)
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ServiceList holds a list of services.
type ServiceList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []Service
}
// ServiceAffinity Type string
type ServiceAffinity string
const (
// ServiceAffinityClientIP is the Client IP based.
ServiceAffinityClientIP ServiceAffinity = "ClientIP"
// ServiceAffinityNone - no session affinity.
ServiceAffinityNone ServiceAffinity = "None"
)
const (
// DefaultClientIPServiceAffinitySeconds is the default timeout seconds
// of Client IP based session affinity - 3 hours.
DefaultClientIPServiceAffinitySeconds int32 = 10800
// MaxClientIPServiceAffinitySeconds is the max timeout seconds
// of Client IP based session affinity - 1 day.
MaxClientIPServiceAffinitySeconds int32 = 86400
)
// SessionAffinityConfig represents the configurations of session affinity.
type SessionAffinityConfig struct {
// clientIP contains the configurations of Client IP based session affinity.
// +optional
ClientIP *ClientIPConfig
}
// ClientIPConfig represents the configurations of Client IP based session affinity.
type ClientIPConfig struct {
// timeoutSeconds specifies the seconds of ClientIP type session sticky time.
// The value must be >0 && <=86400(for 1 day) if ServiceAffinity == "ClientIP".
// Default value is 10800(for 3 hours).
// +optional
TimeoutSeconds *int32
}
// ServiceType string describes ingress methods for a service
type ServiceType string
const (
// ServiceTypeClusterIP means a service will only be accessible inside the
// cluster, via the ClusterIP.
ServiceTypeClusterIP ServiceType = "ClusterIP"
// ServiceTypeNodePort means a service will be exposed on one port of
// every node, in addition to 'ClusterIP' type.
ServiceTypeNodePort ServiceType = "NodePort"
// ServiceTypeLoadBalancer means a service will be exposed via an
// external load balancer (if the cloud provider supports it), in addition
// to 'NodePort' type.
ServiceTypeLoadBalancer ServiceType = "LoadBalancer"
// ServiceTypeExternalName means a service consists of only a reference to
// an external name that kubedns or equivalent will return as a CNAME
// record, with no exposing or proxying of any pods involved.
ServiceTypeExternalName ServiceType = "ExternalName"
)
// ServiceExternalTrafficPolicyType string
type ServiceExternalTrafficPolicyType string
const (
// ServiceExternalTrafficPolicyTypeLocal specifies node-local endpoints behavior.
ServiceExternalTrafficPolicyTypeLocal ServiceExternalTrafficPolicyType = "Local"
// ServiceExternalTrafficPolicyTypeCluster specifies cluster-wide (legacy) behavior.
ServiceExternalTrafficPolicyTypeCluster ServiceExternalTrafficPolicyType = "Cluster"
)
// These are the valid conditions of a service.
const (
// LoadBalancerPortsError represents the condition of the requested ports
// on the cloud load balancer instance.
LoadBalancerPortsError = "LoadBalancerPortsError"
)
// ServiceStatus represents the current status of a service
type ServiceStatus struct {
// LoadBalancer contains the current status of the load-balancer,
// if one is present.
// +optional
LoadBalancer LoadBalancerStatus
// Current service condition
// +optional
Conditions []metav1.Condition
}
// LoadBalancerStatus represents the status of a load-balancer
type LoadBalancerStatus struct {
// Ingress is a list containing ingress points for the load-balancer;
// traffic intended for the service should be sent to these ingress points.
// +optional
Ingress []LoadBalancerIngress
}
// LoadBalancerIngress represents the status of a load-balancer ingress point:
// traffic intended for the service should be sent to an ingress point.
type LoadBalancerIngress struct {
// IP is set for load-balancer ingress points that are IP based
// (typically GCE or OpenStack load-balancers)
// +optional
IP string
// Hostname is set for load-balancer ingress points that are DNS based
// (typically AWS load-balancers)
// +optional
Hostname string
// Ports is a list of records of service ports
// If used, every port defined in the service should have an entry in it
// +optional
Ports []PortStatus
}
const (
// MaxServiceTopologyKeys is the largest number of topology keys allowed on a service
MaxServiceTopologyKeys = 16
)
// IPFamily represents the IP Family (IPv4 or IPv6). This type is used
// to express the family of an IP expressed by a type (e.g. service.spec.ipFamilies).
type IPFamily string
const (
// IPv4Protocol indicates that this IP is IPv4 protocol
IPv4Protocol IPFamily = "IPv4"
// IPv6Protocol indicates that this IP is IPv6 protocol
IPv6Protocol IPFamily = "IPv6"
)
// IPFamilyPolicyType represents the dual-stack-ness requested or required by a Service
type IPFamilyPolicyType string
const (
// IPFamilyPolicySingleStack indicates that this service is required to have a single IPFamily.
// The IPFamily assigned is based on the default IPFamily used by the cluster
// or as identified by service.spec.ipFamilies field
IPFamilyPolicySingleStack IPFamilyPolicyType = "SingleStack"
// IPFamilyPolicyPreferDualStack indicates that this service prefers dual-stack when
// the cluster is configured for dual-stack. If the cluster is not configured
// for dual-stack the service will be assigned a single IPFamily. If the IPFamily is not
// set in service.spec.ipFamilies then the service will be assigned the default IPFamily
// configured on the cluster
IPFamilyPolicyPreferDualStack IPFamilyPolicyType = "PreferDualStack"
// IPFamilyPolicyRequireDualStack indicates that this service requires dual-stack. Using
// IPFamilyPolicyRequireDualStack on a single stack cluster will result in validation errors. The
// IPFamilies (and their order) assigned to this service is based on service.spec.ipFamilies. If
// service.spec.ipFamilies was not provided then it will be assigned according to how they are
// configured on the cluster. If service.spec.ipFamilies has only one entry then the alternative
// IPFamily will be added by apiserver
IPFamilyPolicyRequireDualStack IPFamilyPolicyType = "RequireDualStack"
)
// ServiceSpec describes the attributes that a user creates on a service
type ServiceSpec struct {
// Type determines how the Service is exposed. Defaults to ClusterIP. Valid
// options are ExternalName, ClusterIP, NodePort, and LoadBalancer.
// "ExternalName" maps to the specified externalName.
// "ClusterIP" allocates a cluster-internal IP address for load-balancing to
// endpoints. Endpoints are determined by the selector or if that is not
// specified, by manual construction of an Endpoints object. If clusterIP is
// "None", no virtual IP is allocated and the endpoints are published as a
// set of endpoints rather than a stable IP.
// "NodePort" builds on ClusterIP and allocates a port on every node which
// routes to the clusterIP.
// "LoadBalancer" builds on NodePort and creates an
// external load-balancer (if supported in the current cloud) which routes
// to the clusterIP.
// More info: https://kubernetes.io/docs/concepts/services-networking/service/
// +optional
Type ServiceType
// Required: The list of ports that are exposed by this service.
Ports []ServicePort
// Route service traffic to pods with label keys and values matching this
// selector. If empty or not present, the service is assumed to have an
// external process managing its endpoints, which Kubernetes will not
// modify. Only applies to types ClusterIP, NodePort, and LoadBalancer.
// Ignored if type is ExternalName.
// More info: https://kubernetes.io/docs/concepts/services-networking/service/
Selector map[string]string
// ClusterIP is the IP address of the service and is usually assigned
// randomly by the master. If an address is specified manually and is not in
// use by others, it will be allocated to the service; otherwise, creation
// of the service will fail. This field can not be changed through updates.
// Valid values are "None", empty string (""), or a valid IP address. "None"
// can be specified for headless services when proxying is not required.
// Only applies to types ClusterIP, NodePort, and LoadBalancer. Ignored if
// type is ExternalName.
// More info: https://kubernetes.io/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies
// +optional
ClusterIP string
// ClusterIPs identifies all the ClusterIPs assigned to this
// service. ClusterIPs are assigned or reserved based on the values of
// service.spec.ipFamilies. A maximum of two entries (dual-stack IPs) are
// allowed in ClusterIPs. The IPFamily of each ClusterIP must match
// values provided in service.spec.ipFamilies. Clients using ClusterIPs must
// keep it in sync with ClusterIP (if provided) by having ClusterIP matching
// first element of ClusterIPs.
// +optional
ClusterIPs []string
// IPFamilies identifies all the IPFamilies assigned for this Service. If a value
// was not provided for IPFamilies it will be defaulted based on the cluster
// configuration and the value of service.spec.ipFamilyPolicy. A maximum of two
// values (dual-stack IPFamilies) are allowed in IPFamilies. IPFamilies field is
// conditionally mutable: it allows for adding or removing a secondary IPFamily,
// but it does not allow changing the primary IPFamily of the service.
// +optional
IPFamilies []IPFamily
// IPFamilyPolicy represents the dual-stack-ness requested or required by this
// Service. If there is no value provided, then this Service will be considered
// SingleStack (single IPFamily). Services can be SingleStack (single IPFamily),
// PreferDualStack (two dual-stack IPFamilies on dual-stack clusters or single
// IPFamily on single-stack clusters), or RequireDualStack (two dual-stack IPFamilies
// on dual-stack configured clusters, otherwise fail). The IPFamilies and ClusterIPs assigned
// to this service can be controlled by service.spec.ipFamilies and service.spec.clusterIPs
// respectively.
// +optional
IPFamilyPolicy *IPFamilyPolicyType
// ExternalName is the external reference that kubedns or equivalent will
// return as a CNAME record for this service. No proxying will be involved.
// Must be a valid RFC-1123 hostname (https://tools.ietf.org/html/rfc1123)
// and requires Type to be ExternalName.
ExternalName string
// ExternalIPs are used by external load balancers, or can be set by
// users to handle external traffic that arrives at a node.
// +optional
ExternalIPs []string
// Only applies to Service Type: LoadBalancer
// LoadBalancer will get created with the IP specified in this field.
// This feature depends on whether the underlying cloud-provider supports specifying
// the loadBalancerIP when a load balancer is created.
// This field will be ignored if the cloud-provider does not support the feature.
// +optional
LoadBalancerIP string
// Optional: Supports "ClientIP" and "None". Used to maintain session affinity.
// +optional
SessionAffinity ServiceAffinity
// sessionAffinityConfig contains the configurations of session affinity.
// +optional
SessionAffinityConfig *SessionAffinityConfig
// Optional: If specified and supported by the platform, this will restrict traffic through the cloud-provider
// load-balancer will be restricted to the specified client IPs. This field will be ignored if the
// cloud-provider does not support the feature."
// +optional
LoadBalancerSourceRanges []string
// externalTrafficPolicy denotes if this Service desires to route external
// traffic to node-local or cluster-wide endpoints. "Local" preserves the
// client source IP and avoids a second hop for LoadBalancer and Nodeport
// type services, but risks potentially imbalanced traffic spreading.
// "Cluster" obscures the client source IP and may cause a second hop to
// another node, but should have good overall load-spreading.
// +optional
ExternalTrafficPolicy ServiceExternalTrafficPolicyType
// healthCheckNodePort specifies the healthcheck nodePort for the service.
// If not specified, HealthCheckNodePort is created by the service api
// backend with the allocated nodePort. Will use user-specified nodePort value
// if specified by the client. Only effects when Type is set to LoadBalancer
// and ExternalTrafficPolicy is set to Local.
// +optional
HealthCheckNodePort int32
// publishNotReadyAddresses indicates that any agent which deals with endpoints for this
// Service should disregard any indications of ready/not-ready.
// The primary use case for setting this field is for a StatefulSet's Headless Service to
// propagate SRV DNS records for its Pods for the purpose of peer discovery.
// The Kubernetes controllers that generate Endpoints and EndpointSlice resources for
// Services interpret this to mean that all endpoints are considered "ready" even if the
// Pods themselves are not. Agents which consume only Kubernetes generated endpoints
// through the Endpoints or EndpointSlice resources can safely assume this behavior.
// +optional
PublishNotReadyAddresses bool
// topologyKeys is a preference-order list of topology keys which
// implementations of services should use to preferentially sort endpoints
// when accessing this Service, it can not be used at the same time as
// externalTrafficPolicy=Local.
// Topology keys must be valid label keys and at most 16 keys may be specified.
// Endpoints are chosen based on the first topology key with available backends.
// If this field is specified and all entries have no backends that match
// the topology of the client, the service has no backends for that client
// and connections should fail.
// The special value "*" may be used to mean "any topology". This catch-all
// value, if used, only makes sense as the last value in the list.
// If this is not specified or empty, no topology constraints will be applied.
// This field is alpha-level and is only honored by servers that enable the ServiceTopology feature.
// This field is deprecated and will be removed in a future version.
// +optional
TopologyKeys []string
// allocateLoadBalancerNodePorts defines if NodePorts will be automatically
// allocated for services with type LoadBalancer. Default is "true". It may be
// set to "false" if the cluster load-balancer does not rely on NodePorts.
// allocateLoadBalancerNodePorts may only be set for services with type LoadBalancer
// and will be cleared if the type is changed to any other type.
// This field is alpha-level and is only honored by servers that enable the ServiceLBNodePortControl feature.
// +optional
AllocateLoadBalancerNodePorts *bool
}
// ServicePort represents the port on which the service is exposed
type ServicePort struct {
// Optional if only one ServicePort is defined on this service: The
// name of this port within the service. This must be a DNS_LABEL.
// All ports within a ServiceSpec must have unique names. This maps to
// the 'Name' field in EndpointPort objects.
Name string
// The IP protocol for this port. Supports "TCP", "UDP", and "SCTP".
Protocol Protocol
// The application protocol for this port.
// This field follows standard Kubernetes label syntax.
// Un-prefixed names are reserved for IANA standard service names (as per
// RFC-6335 and http://www.iana.org/assignments/service-names).
// Non-standard protocols should use prefixed names such as
// mycompany.com/my-custom-protocol.
// +optional
AppProtocol *string
// The port that will be exposed on the service.
Port int32
// Optional: The target port on pods selected by this service. If this
// is a string, it will be looked up as a named port in the target
// Pod's container ports. If this is not specified, the value
// of the 'port' field is used (an identity map).
// This field is ignored for services with clusterIP=None, and should be
// omitted or set equal to the 'port' field.
TargetPort intstr.IntOrString
// The port on each node on which this service is exposed.
// Default is to auto-allocate a port if the ServiceType of this Service requires one.
NodePort int32
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Service is a named abstraction of software service (for example, mysql) consisting of local port
// (for example 3306) that the proxy listens on, and the selector that determines which pods
// will answer requests sent through the proxy.
type Service struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Spec defines the behavior of a service.
// +optional
Spec ServiceSpec
// Status represents the current status of a service.
// +optional
Status ServiceStatus
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ServiceAccount binds together:
// * a name, understood by users, and perhaps by peripheral systems, for an identity
// * a principal that can be authenticated and authorized
// * a set of secrets
type ServiceAccount struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Secrets is the list of secrets allowed to be used by pods running using this ServiceAccount
Secrets []ObjectReference
// ImagePullSecrets is a list of references to secrets in the same namespace to use for pulling any images
// in pods that reference this ServiceAccount. ImagePullSecrets are distinct from Secrets because Secrets
// can be mounted in the pod, but ImagePullSecrets are only accessed by the kubelet.
// +optional
ImagePullSecrets []LocalObjectReference
// AutomountServiceAccountToken indicates whether pods running as this service account should have an API token automatically mounted.
// Can be overridden at the pod level.
// +optional
AutomountServiceAccountToken *bool
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ServiceAccountList is a list of ServiceAccount objects
type ServiceAccountList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []ServiceAccount
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Endpoints is a collection of endpoints that implement the actual service. Example:
// Name: "mysvc",
// Subsets: [
// {
// Addresses: [{"ip": "10.10.1.1"}, {"ip": "10.10.2.2"}],
// Ports: [{"name": "a", "port": 8675}, {"name": "b", "port": 309}]
// },
// {
// Addresses: [{"ip": "10.10.3.3"}],
// Ports: [{"name": "a", "port": 93}, {"name": "b", "port": 76}]
// },
// ]
type Endpoints struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// The set of all endpoints is the union of all subsets.
Subsets []EndpointSubset
}
// EndpointSubset is a group of addresses with a common set of ports. The
// expanded set of endpoints is the Cartesian product of Addresses x Ports.
// For example, given:
// {
// Addresses: [{"ip": "10.10.1.1"}, {"ip": "10.10.2.2"}],
// Ports: [{"name": "a", "port": 8675}, {"name": "b", "port": 309}]
// }
// The resulting set of endpoints can be viewed as:
// a: [ 10.10.1.1:8675, 10.10.2.2:8675 ],
// b: [ 10.10.1.1:309, 10.10.2.2:309 ]
type EndpointSubset struct {
Addresses []EndpointAddress
NotReadyAddresses []EndpointAddress
Ports []EndpointPort
}
// EndpointAddress is a tuple that describes single IP address.
type EndpointAddress struct {
// The IP of this endpoint.
// IPv6 is also accepted but not fully supported on all platforms. Also, certain
// kubernetes components, like kube-proxy, are not IPv6 ready.
// TODO: This should allow hostname or IP, see #4447.
IP string
// Optional: Hostname of this endpoint
// Meant to be used by DNS servers etc.
// +optional
Hostname string
// Optional: Node hosting this endpoint. This can be used to determine endpoints local to a node.
// +optional
NodeName *string
// Optional: The kubernetes object related to the entry point.
TargetRef *ObjectReference
}
// EndpointPort is a tuple that describes a single port.
type EndpointPort struct {
// The name of this port (corresponds to ServicePort.Name). Optional
// if only one port is defined. Must be a DNS_LABEL.
Name string
// The port number.
Port int32
// The IP protocol for this port.
Protocol Protocol
// The application protocol for this port.
// This field follows standard Kubernetes label syntax.
// Un-prefixed names are reserved for IANA standard service names (as per
// RFC-6335 and http://www.iana.org/assignments/service-names).
// Non-standard protocols should use prefixed names such as
// mycompany.com/my-custom-protocol.
// +optional
AppProtocol *string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// EndpointsList is a list of endpoints.
type EndpointsList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []Endpoints
}
// NodeSpec describes the attributes that a node is created with.
type NodeSpec struct {
// PodCIDRs represents the IP ranges assigned to the node for usage by Pods on that node. It may
// contain AT MOST one value for each of IPv4 and IPv6.
// Note: assigning IP ranges to nodes might need to be revisited when we support migratable IPs.
// +optional
PodCIDRs []string
// ID of the node assigned by the cloud provider
// Note: format is "<ProviderName>://<ProviderSpecificNodeID>"
// +optional
ProviderID string
// Unschedulable controls node schedulability of new pods. By default node is schedulable.
// +optional
Unschedulable bool
// If specified, the node's taints.
// +optional
Taints []Taint
// If specified, the source to get node configuration from
// The DynamicKubeletConfig feature gate must be enabled for the Kubelet to use this field
// +optional
ConfigSource *NodeConfigSource
// Deprecated. Not all kubelets will set this field. Remove field after 1.13.
// see: https://issues.k8s.io/61966
// +optional
DoNotUseExternalID string
}
// NodeConfigSource specifies a source of node configuration. Exactly one subfield must be non-nil.
type NodeConfigSource struct {
ConfigMap *ConfigMapNodeConfigSource
}
// ConfigMapNodeConfigSource represents the config map of a node
type ConfigMapNodeConfigSource struct {
// Namespace is the metadata.namespace of the referenced ConfigMap.
// This field is required in all cases.
Namespace string
// Name is the metadata.name of the referenced ConfigMap.
// This field is required in all cases.
Name string
// UID is the metadata.UID of the referenced ConfigMap.
// This field is forbidden in Node.Spec, and required in Node.Status.
// +optional
UID types.UID
// ResourceVersion is the metadata.ResourceVersion of the referenced ConfigMap.
// This field is forbidden in Node.Spec, and required in Node.Status.
// +optional
ResourceVersion string
// KubeletConfigKey declares which key of the referenced ConfigMap corresponds to the KubeletConfiguration structure
// This field is required in all cases.
KubeletConfigKey string
}
// DaemonEndpoint contains information about a single Daemon endpoint.
type DaemonEndpoint struct {
/*
The port tag was not properly in quotes in earlier releases, so it must be
uppercase for backwards compatibility (since it was falling back to var name of
'Port').
*/
// Port number of the given endpoint.
Port int32
}
// NodeDaemonEndpoints lists ports opened by daemons running on the Node.
type NodeDaemonEndpoints struct {
// Endpoint on which Kubelet is listening.
// +optional
KubeletEndpoint DaemonEndpoint
}
// NodeSystemInfo is a set of ids/uuids to uniquely identify the node.
type NodeSystemInfo struct {
// MachineID reported by the node. For unique machine identification
// in the cluster this field is preferred. Learn more from man(5)
// machine-id: http://man7.org/linux/man-pages/man5/machine-id.5.html
MachineID string
// SystemUUID reported by the node. For unique machine identification
// MachineID is preferred. This field is specific to Red Hat hosts
// https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/rhsm/uuid
SystemUUID string
// Boot ID reported by the node.
BootID string
// Kernel Version reported by the node.
KernelVersion string
// OS Image reported by the node.
OSImage string
// ContainerRuntime Version reported by the node.
ContainerRuntimeVersion string
// Kubelet Version reported by the node.
KubeletVersion string
// KubeProxy Version reported by the node.
KubeProxyVersion string
// The Operating System reported by the node
OperatingSystem string
// The Architecture reported by the node
Architecture string
}
// NodeConfigStatus describes the status of the config assigned by Node.Spec.ConfigSource.
type NodeConfigStatus struct {
// Assigned reports the checkpointed config the node will try to use.
// When Node.Spec.ConfigSource is updated, the node checkpoints the associated
// config payload to local disk, along with a record indicating intended
// config. The node refers to this record to choose its config checkpoint, and
// reports this record in Assigned. Assigned only updates in the status after
// the record has been checkpointed to disk. When the Kubelet is restarted,
// it tries to make the Assigned config the Active config by loading and
// validating the checkpointed payload identified by Assigned.
// +optional
Assigned *NodeConfigSource
// Active reports the checkpointed config the node is actively using.
// Active will represent either the current version of the Assigned config,
// or the current LastKnownGood config, depending on whether attempting to use the
// Assigned config results in an error.
// +optional
Active *NodeConfigSource
// LastKnownGood reports the checkpointed config the node will fall back to
// when it encounters an error attempting to use the Assigned config.
// The Assigned config becomes the LastKnownGood config when the node determines
// that the Assigned config is stable and correct.
// This is currently implemented as a 10-minute soak period starting when the local
// record of Assigned config is updated. If the Assigned config is Active at the end
// of this period, it becomes the LastKnownGood. Note that if Spec.ConfigSource is
// reset to nil (use local defaults), the LastKnownGood is also immediately reset to nil,
// because the local default config is always assumed good.
// You should not make assumptions about the node's method of determining config stability
// and correctness, as this may change or become configurable in the future.
// +optional
LastKnownGood *NodeConfigSource
// Error describes any problems reconciling the Spec.ConfigSource to the Active config.
// Errors may occur, for example, attempting to checkpoint Spec.ConfigSource to the local Assigned
// record, attempting to checkpoint the payload associated with Spec.ConfigSource, attempting
// to load or validate the Assigned config, etc.
// Errors may occur at different points while syncing config. Earlier errors (e.g. download or
// checkpointing errors) will not result in a rollback to LastKnownGood, and may resolve across
// Kubelet retries. Later errors (e.g. loading or validating a checkpointed config) will result in
// a rollback to LastKnownGood. In the latter case, it is usually possible to resolve the error
// by fixing the config assigned in Spec.ConfigSource.
// You can find additional information for debugging by searching the error message in the Kubelet log.
// Error is a human-readable description of the error state; machines can check whether or not Error
// is empty, but should not rely on the stability of the Error text across Kubelet versions.
// +optional
Error string
}
// NodeStatus is information about the current status of a node.
type NodeStatus struct {
// Capacity represents the total resources of a node.
// +optional
Capacity ResourceList
// Allocatable represents the resources of a node that are available for scheduling.
// +optional
Allocatable ResourceList
// NodePhase is the current lifecycle phase of the node.
// +optional
Phase NodePhase
// Conditions is an array of current node conditions.
// +optional
Conditions []NodeCondition
// Queried from cloud provider, if available.
// +optional
Addresses []NodeAddress
// Endpoints of daemons running on the Node.
// +optional
DaemonEndpoints NodeDaemonEndpoints
// Set of ids/uuids to uniquely identify the node.
// +optional
NodeInfo NodeSystemInfo
// List of container images on this node
// +optional
Images []ContainerImage
// List of attachable volumes in use (mounted) by the node.
// +optional
VolumesInUse []UniqueVolumeName
// List of volumes that are attached to the node.
// +optional
VolumesAttached []AttachedVolume
// Status of the config assigned to the node via the dynamic Kubelet config feature.
// +optional
Config *NodeConfigStatus
}
// UniqueVolumeName defines the name of attached volume
type UniqueVolumeName string
// AttachedVolume describes a volume attached to a node
type AttachedVolume struct {
// Name of the attached volume
Name UniqueVolumeName
// DevicePath represents the device path where the volume should be available
DevicePath string
}
// AvoidPods describes pods that should avoid this node. This is the value for a
// Node annotation with key scheduler.alpha.kubernetes.io/preferAvoidPods and
// will eventually become a field of NodeStatus.
type AvoidPods struct {
// Bounded-sized list of signatures of pods that should avoid this node, sorted
// in timestamp order from oldest to newest. Size of the slice is unspecified.
// +optional
PreferAvoidPods []PreferAvoidPodsEntry
}
// PreferAvoidPodsEntry describes a class of pods that should avoid this node.
type PreferAvoidPodsEntry struct {
// The class of pods.
PodSignature PodSignature
// Time at which this entry was added to the list.
// +optional
EvictionTime metav1.Time
// (brief) reason why this entry was added to the list.
// +optional
Reason string
// Human readable message indicating why this entry was added to the list.
// +optional
Message string
}
// PodSignature describes the class of pods that should avoid this node.
// Exactly one field should be set.
type PodSignature struct {
// Reference to controller whose pods should avoid this node.
// +optional
PodController *metav1.OwnerReference
}
// ContainerImage describe a container image
type ContainerImage struct {
// Names by which this image is known.
Names []string
// The size of the image in bytes.
// +optional
SizeBytes int64
}
// NodePhase defines the phase in which a node is in
type NodePhase string
// These are the valid phases of node.
const (
// NodePending means the node has been created/added by the system, but not configured.
NodePending NodePhase = "Pending"
// NodeRunning means the node has been configured and has Kubernetes components running.
NodeRunning NodePhase = "Running"
// NodeTerminated means the node has been removed from the cluster.
NodeTerminated NodePhase = "Terminated"
)
// NodeConditionType defines node's condition
type NodeConditionType string
// These are valid conditions of node. Currently, we don't have enough information to decide
// node condition. In the future, we will add more. The proposed set of conditions are:
// NodeReady, NodeReachable
const (
// NodeReady means kubelet is healthy and ready to accept pods.
NodeReady NodeConditionType = "Ready"
// NodeMemoryPressure means the kubelet is under pressure due to insufficient available memory.
NodeMemoryPressure NodeConditionType = "MemoryPressure"
// NodeDiskPressure means the kubelet is under pressure due to insufficient available disk.
NodeDiskPressure NodeConditionType = "DiskPressure"
// NodeNetworkUnavailable means that network for the node is not correctly configured.
NodeNetworkUnavailable NodeConditionType = "NetworkUnavailable"
)
// NodeCondition represents the node's condition
type NodeCondition struct {
Type NodeConditionType
Status ConditionStatus
// +optional
LastHeartbeatTime metav1.Time
// +optional
LastTransitionTime metav1.Time
// +optional
Reason string
// +optional
Message string
}
// NodeAddressType defines the node's address type
type NodeAddressType string
// These are valid values of node address type
const (
NodeHostName NodeAddressType = "Hostname"
NodeExternalIP NodeAddressType = "ExternalIP"
NodeInternalIP NodeAddressType = "InternalIP"
NodeExternalDNS NodeAddressType = "ExternalDNS"
NodeInternalDNS NodeAddressType = "InternalDNS"
)
// NodeAddress represents node's address
type NodeAddress struct {
Type NodeAddressType
Address string
}
// NodeResources is an object for conveying resource information about a node.
// see https://kubernetes.io/docs/concepts/architecture/nodes/#capacity for more details.
type NodeResources struct {
// Capacity represents the available resources of a node
// +optional
Capacity ResourceList
}
// ResourceName is the name identifying various resources in a ResourceList.
type ResourceName string
// Resource names must be not more than 63 characters, consisting of upper- or lower-case alphanumeric characters,
// with the -, _, and . characters allowed anywhere, except the first or last character.
// The default convention, matching that for annotations, is to use lower-case names, with dashes, rather than
// camel case, separating compound words.
// Fully-qualified resource typenames are constructed from a DNS-style subdomain, followed by a slash `/` and a name.
const (
// CPU, in cores. (500m = .5 cores)
ResourceCPU ResourceName = "cpu"
// Memory, in bytes. (500Gi = 500GiB = 500 * 1024 * 1024 * 1024)
ResourceMemory ResourceName = "memory"
// Volume size, in bytes (e,g. 5Gi = 5GiB = 5 * 1024 * 1024 * 1024)
ResourceStorage ResourceName = "storage"
// Local ephemeral storage, in bytes. (500Gi = 500GiB = 500 * 1024 * 1024 * 1024)
// The resource name for ResourceEphemeralStorage is alpha and it can change across releases.
ResourceEphemeralStorage ResourceName = "ephemeral-storage"
)
const (
// ResourceDefaultNamespacePrefix is the default namespace prefix.
ResourceDefaultNamespacePrefix = "kubernetes.io/"
// ResourceHugePagesPrefix is the name prefix for huge page resources (alpha).
ResourceHugePagesPrefix = "hugepages-"
// ResourceAttachableVolumesPrefix is the name prefix for storage resource limits
ResourceAttachableVolumesPrefix = "attachable-volumes-"
)
// ResourceList is a set of (resource name, quantity) pairs.
type ResourceList map[ResourceName]resource.Quantity
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Node is a worker node in Kubernetes
// The name of the node according to etcd is in ObjectMeta.Name.
type Node struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Spec defines the behavior of a node.
// +optional
Spec NodeSpec
// Status describes the current status of a Node
// +optional
Status NodeStatus
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// NodeList is a list of nodes.
type NodeList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []Node
}
// NamespaceSpec describes the attributes on a Namespace
type NamespaceSpec struct {
// Finalizers is an opaque list of values that must be empty to permanently remove object from storage
Finalizers []FinalizerName
}
// FinalizerName is the name identifying a finalizer during namespace lifecycle.
type FinalizerName string
// These are internal finalizer values to Kubernetes, must be qualified name unless defined here or
// in metav1.
const (
FinalizerKubernetes FinalizerName = "kubernetes"
)
// NamespaceStatus is information about the current status of a Namespace.
type NamespaceStatus struct {
// Phase is the current lifecycle phase of the namespace.
// +optional
Phase NamespacePhase
// +optional
Conditions []NamespaceCondition
}
// NamespacePhase defines the phase in which the namespace is
type NamespacePhase string
// These are the valid phases of a namespace.
const (
// NamespaceActive means the namespace is available for use in the system
NamespaceActive NamespacePhase = "Active"
// NamespaceTerminating means the namespace is undergoing graceful termination
NamespaceTerminating NamespacePhase = "Terminating"
)
// NamespaceConditionType defines constants reporting on status during namespace lifetime and deletion progress
type NamespaceConditionType string
// These are valid conditions of a namespace.
const (
NamespaceDeletionDiscoveryFailure NamespaceConditionType = "NamespaceDeletionDiscoveryFailure"
NamespaceDeletionContentFailure NamespaceConditionType = "NamespaceDeletionContentFailure"
NamespaceDeletionGVParsingFailure NamespaceConditionType = "NamespaceDeletionGroupVersionParsingFailure"
)
// NamespaceCondition contains details about state of namespace.
type NamespaceCondition struct {
// Type of namespace controller condition.
Type NamespaceConditionType
// Status of the condition, one of True, False, Unknown.
Status ConditionStatus
// +optional
LastTransitionTime metav1.Time
// +optional
Reason string
// +optional
Message string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Namespace provides a scope for Names.
// Use of multiple namespaces is optional
type Namespace struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Spec defines the behavior of the Namespace.
// +optional
Spec NamespaceSpec
// Status describes the current status of a Namespace
// +optional
Status NamespaceStatus
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// NamespaceList is a list of Namespaces.
type NamespaceList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []Namespace
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Binding ties one object to another; for example, a pod is bound to a node by a scheduler.
// Deprecated in 1.7, please use the bindings subresource of pods instead.
type Binding struct {
metav1.TypeMeta
// ObjectMeta describes the object that is being bound.
// +optional
metav1.ObjectMeta
// Target is the object to bind to.
Target ObjectReference
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// EphemeralContainers is a list of ephemeral containers used with the Pod ephemeralcontainers subresource.
type EphemeralContainers struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// A list of ephemeral containers associated with this pod. New ephemeral containers
// may be appended to this list, but existing ephemeral containers may not be removed
// or modified.
EphemeralContainers []EphemeralContainer
}
// Preconditions must be fulfilled before an operation (update, delete, etc.) is carried out.
type Preconditions struct {
// Specifies the target UID.
// +optional
UID *types.UID
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodLogOptions is the query options for a Pod's logs REST call
type PodLogOptions struct {
metav1.TypeMeta
// Container for which to return logs
Container string
// If true, follow the logs for the pod
Follow bool
// If true, return previous terminated container logs
Previous bool
// A relative time in seconds before the current time from which to show logs. If this value
// precedes the time a pod was started, only logs since the pod start will be returned.
// If this value is in the future, no logs will be returned.
// Only one of sinceSeconds or sinceTime may be specified.
SinceSeconds *int64
// An RFC3339 timestamp from which to show logs. If this value
// precedes the time a pod was started, only logs since the pod start will be returned.
// If this value is in the future, no logs will be returned.
// Only one of sinceSeconds or sinceTime may be specified.
SinceTime *metav1.Time
// If true, add an RFC 3339 timestamp with 9 digits of fractional seconds at the beginning of every line
// of log output.
Timestamps bool
// If set, the number of lines from the end of the logs to show. If not specified,
// logs are shown from the creation of the container or sinceSeconds or sinceTime
TailLines *int64
// If set, the number of bytes to read from the server before terminating the
// log output. This may not display a complete final line of logging, and may return
// slightly more or slightly less than the specified limit.
LimitBytes *int64
// insecureSkipTLSVerifyBackend indicates that the apiserver should not confirm the validity of the
// serving certificate of the backend it is connecting to. This will make the HTTPS connection between the apiserver
// and the backend insecure. This means the apiserver cannot verify the log data it is receiving came from the real
// kubelet. If the kubelet is configured to verify the apiserver's TLS credentials, it does not mean the
// connection to the real kubelet is vulnerable to a man in the middle attack (e.g. an attacker could not intercept
// the actual log data coming from the real kubelet).
// +optional
InsecureSkipTLSVerifyBackend bool
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodAttachOptions is the query options to a Pod's remote attach call
// TODO: merge w/ PodExecOptions below for stdin, stdout, etc
type PodAttachOptions struct {
metav1.TypeMeta
// Stdin if true indicates that stdin is to be redirected for the attach call
// +optional
Stdin bool
// Stdout if true indicates that stdout is to be redirected for the attach call
// +optional
Stdout bool
// Stderr if true indicates that stderr is to be redirected for the attach call
// +optional
Stderr bool
// TTY if true indicates that a tty will be allocated for the attach call
// +optional
TTY bool
// Container to attach to.
// +optional
Container string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodExecOptions is the query options to a Pod's remote exec call
type PodExecOptions struct {
metav1.TypeMeta
// Stdin if true indicates that stdin is to be redirected for the exec call
Stdin bool
// Stdout if true indicates that stdout is to be redirected for the exec call
Stdout bool
// Stderr if true indicates that stderr is to be redirected for the exec call
Stderr bool
// TTY if true indicates that a tty will be allocated for the exec call
TTY bool
// Container in which to execute the command.
Container string
// Command is the remote command to execute; argv array; not executed within a shell.
Command []string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodPortForwardOptions is the query options to a Pod's port forward call
type PodPortForwardOptions struct {
metav1.TypeMeta
// The list of ports to forward
// +optional
Ports []int32
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// PodProxyOptions is the query options to a Pod's proxy call
type PodProxyOptions struct {
metav1.TypeMeta
// Path is the URL path to use for the current proxy request
Path string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// NodeProxyOptions is the query options to a Node's proxy call
type NodeProxyOptions struct {
metav1.TypeMeta
// Path is the URL path to use for the current proxy request
Path string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ServiceProxyOptions is the query options to a Service's proxy call.
type ServiceProxyOptions struct {
metav1.TypeMeta
// Path is the part of URLs that include service endpoints, suffixes,
// and parameters to use for the current proxy request to service.
// For example, the whole request URL is
// http://localhost/api/v1/namespaces/kube-system/services/elasticsearch-logging/_search?q=user:kimchy.
// Path is _search?q=user:kimchy.
Path string
}
// ObjectReference contains enough information to let you inspect or modify the referred object.
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
type ObjectReference struct {
// +optional
Kind string
// +optional
Namespace string
// +optional
Name string
// +optional
UID types.UID
// +optional
APIVersion string
// +optional
ResourceVersion string
// Optional. If referring to a piece of an object instead of an entire object, this string
// should contain information to identify the sub-object. For example, if the object
// reference is to a container within a pod, this would take on a value like:
// "spec.containers{name}" (where "name" refers to the name of the container that triggered
// the event) or if no container name is specified "spec.containers[2]" (container with
// index 2 in this pod). This syntax is chosen only to have some well-defined way of
// referencing a part of an object.
// TODO: this design is not final and this field is subject to change in the future.
// +optional
FieldPath string
}
// LocalObjectReference contains enough information to let you locate the referenced object inside the same namespace.
type LocalObjectReference struct {
//TODO: Add other useful fields. apiVersion, kind, uid?
Name string
}
// TypedLocalObjectReference contains enough information to let you locate the typed referenced object inside the same namespace.
type TypedLocalObjectReference struct {
// APIGroup is the group for the resource being referenced.
// If APIGroup is not specified, the specified Kind must be in the core API group.
// For any other third-party types, APIGroup is required.
// +optional
APIGroup *string
// Kind is the type of resource being referenced
Kind string
// Name is the name of resource being referenced
Name string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// SerializedReference represents a serialized object reference
type SerializedReference struct {
metav1.TypeMeta
// +optional
Reference ObjectReference
}
// EventSource represents the source from which an event is generated
type EventSource struct {
// Component from which the event is generated.
// +optional
Component string
// Node name on which the event is generated.
// +optional
Host string
}
// Valid values for event types (new types could be added in future)
const (
// Information only and will not cause any problems
EventTypeNormal string = "Normal"
// These events are to warn that something might go wrong
EventTypeWarning string = "Warning"
)
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Event is a report of an event somewhere in the cluster. Events
// have a limited retention time and triggers and messages may evolve
// with time. Event consumers should not rely on the timing of an event
// with a given Reason reflecting a consistent underlying trigger, or the
// continued existence of events with that Reason. Events should be
// treated as informative, best-effort, supplemental data.
// TODO: Decide whether to store these separately or with the object they apply to.
type Event struct {
metav1.TypeMeta
metav1.ObjectMeta
// The object that this event is about. Mapped to events.Event.regarding
// +optional
InvolvedObject ObjectReference
// Optional; this should be a short, machine understandable string that gives the reason
// for this event being generated. For example, if the event is reporting that a container
// can't start, the Reason might be "ImageNotFound".
// TODO: provide exact specification for format.
// +optional
Reason string
// Optional. A human-readable description of the status of this operation.
// TODO: decide on maximum length. Mapped to events.Event.note
// +optional
Message string
// Optional. The component reporting this event. Should be a short machine understandable string.
// +optional
Source EventSource
// The time at which the event was first recorded. (Time of server receipt is in TypeMeta.)
// +optional
FirstTimestamp metav1.Time
// The time at which the most recent occurrence of this event was recorded.
// +optional
LastTimestamp metav1.Time
// The number of times this event has occurred.
// +optional
Count int32
// Type of this event (Normal, Warning), new types could be added in the future.
// +optional
Type string
// Time when this Event was first observed.
// +optional
EventTime metav1.MicroTime
// Data about the Event series this event represents or nil if it's a singleton Event.
// +optional
Series *EventSeries
// What action was taken/failed regarding to the Regarding object.
// +optional
Action string
// Optional secondary object for more complex actions.
// +optional
Related *ObjectReference
// Name of the controller that emitted this Event, e.g. `kubernetes.io/kubelet`.
// +optional
ReportingController string
// ID of the controller instance, e.g. `kubelet-xyzf`.
// +optional
ReportingInstance string
}
// EventSeries represents a series ov events
type EventSeries struct {
// Number of occurrences in this series up to the last heartbeat time
Count int32
// Time of the last occurrence observed
LastObservedTime metav1.MicroTime
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// EventList is a list of events.
type EventList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []Event
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// List holds a list of objects, which may not be known by the server.
type List metainternalversion.List
// LimitType defines a type of object that is limited
type LimitType string
const (
// LimitTypePod defines limit that applies to all pods in a namespace
LimitTypePod LimitType = "Pod"
// LimitTypeContainer defines limit that applies to all containers in a namespace
LimitTypeContainer LimitType = "Container"
// LimitTypePersistentVolumeClaim defines limit that applies to all persistent volume claims in a namespace
LimitTypePersistentVolumeClaim LimitType = "PersistentVolumeClaim"
)
// LimitRangeItem defines a min/max usage limit for any resource that matches on kind
type LimitRangeItem struct {
// Type of resource that this limit applies to
// +optional
Type LimitType
// Max usage constraints on this kind by resource name
// +optional
Max ResourceList
// Min usage constraints on this kind by resource name
// +optional
Min ResourceList
// Default resource requirement limit value by resource name.
// +optional
Default ResourceList
// DefaultRequest resource requirement request value by resource name.
// +optional
DefaultRequest ResourceList
// MaxLimitRequestRatio represents the max burst value for the named resource
// +optional
MaxLimitRequestRatio ResourceList
}
// LimitRangeSpec defines a min/max usage limit for resources that match on kind
type LimitRangeSpec struct {
// Limits is the list of LimitRangeItem objects that are enforced
Limits []LimitRangeItem
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// LimitRange sets resource usage limits for each kind of resource in a Namespace
type LimitRange struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Spec defines the limits enforced
// +optional
Spec LimitRangeSpec
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// LimitRangeList is a list of LimitRange items.
type LimitRangeList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
// Items is a list of LimitRange objects
Items []LimitRange
}
// The following identify resource constants for Kubernetes object types
const (
// Pods, number
ResourcePods ResourceName = "pods"
// Services, number
ResourceServices ResourceName = "services"
// ReplicationControllers, number
ResourceReplicationControllers ResourceName = "replicationcontrollers"
// ResourceQuotas, number
ResourceQuotas ResourceName = "resourcequotas"
// ResourceSecrets, number
ResourceSecrets ResourceName = "secrets"
// ResourceConfigMaps, number
ResourceConfigMaps ResourceName = "configmaps"
// ResourcePersistentVolumeClaims, number
ResourcePersistentVolumeClaims ResourceName = "persistentvolumeclaims"
// ResourceServicesNodePorts, number
ResourceServicesNodePorts ResourceName = "services.nodeports"
// ResourceServicesLoadBalancers, number
ResourceServicesLoadBalancers ResourceName = "services.loadbalancers"
// CPU request, in cores. (500m = .5 cores)
ResourceRequestsCPU ResourceName = "requests.cpu"
// Memory request, in bytes. (500Gi = 500GiB = 500 * 1024 * 1024 * 1024)
ResourceRequestsMemory ResourceName = "requests.memory"
// Storage request, in bytes
ResourceRequestsStorage ResourceName = "requests.storage"
// Local ephemeral storage request, in bytes. (500Gi = 500GiB = 500 * 1024 * 1024 * 1024)
ResourceRequestsEphemeralStorage ResourceName = "requests.ephemeral-storage"
// CPU limit, in cores. (500m = .5 cores)
ResourceLimitsCPU ResourceName = "limits.cpu"
// Memory limit, in bytes. (500Gi = 500GiB = 500 * 1024 * 1024 * 1024)
ResourceLimitsMemory ResourceName = "limits.memory"
// Local ephemeral storage limit, in bytes. (500Gi = 500GiB = 500 * 1024 * 1024 * 1024)
ResourceLimitsEphemeralStorage ResourceName = "limits.ephemeral-storage"
)
// The following identify resource prefix for Kubernetes object types
const (
// HugePages request, in bytes. (500Gi = 500GiB = 500 * 1024 * 1024 * 1024)
// As burst is not supported for HugePages, we would only quota its request, and ignore the limit.
ResourceRequestsHugePagesPrefix = "requests.hugepages-"
// Default resource requests prefix
DefaultResourceRequestsPrefix = "requests."
)
// ResourceQuotaScope defines a filter that must match each object tracked by a quota
type ResourceQuotaScope string
// These are valid values for resource quota spec
const (
// Match all pod objects where spec.activeDeadlineSeconds >=0
ResourceQuotaScopeTerminating ResourceQuotaScope = "Terminating"
// Match all pod objects where spec.activeDeadlineSeconds is nil
ResourceQuotaScopeNotTerminating ResourceQuotaScope = "NotTerminating"
// Match all pod objects that have best effort quality of service
ResourceQuotaScopeBestEffort ResourceQuotaScope = "BestEffort"
// Match all pod objects that do not have best effort quality of service
ResourceQuotaScopeNotBestEffort ResourceQuotaScope = "NotBestEffort"
// Match all pod objects that have priority class mentioned
ResourceQuotaScopePriorityClass ResourceQuotaScope = "PriorityClass"
)
// ResourceQuotaSpec defines the desired hard limits to enforce for Quota
type ResourceQuotaSpec struct {
// Hard is the set of desired hard limits for each named resource
// +optional
Hard ResourceList
// A collection of filters that must match each object tracked by a quota.
// If not specified, the quota matches all objects.
// +optional
Scopes []ResourceQuotaScope
// ScopeSelector is also a collection of filters like Scopes that must match each object tracked by a quota
// but expressed using ScopeSelectorOperator in combination with possible values.
// +optional
ScopeSelector *ScopeSelector
}
// ScopeSelector represents the AND of the selectors represented
// by the scoped-resource selector terms.
type ScopeSelector struct {
// A list of scope selector requirements by scope of the resources.
// +optional
MatchExpressions []ScopedResourceSelectorRequirement
}
// ScopedResourceSelectorRequirement is a selector that contains values, a scope name, and an operator
// that relates the scope name and values.
type ScopedResourceSelectorRequirement struct {
// The name of the scope that the selector applies to.
ScopeName ResourceQuotaScope
// Represents a scope's relationship to a set of values.
// Valid operators are In, NotIn, Exists, DoesNotExist.
Operator ScopeSelectorOperator
// An array of string values. If the operator is In or NotIn,
// the values array must be non-empty. If the operator is Exists or DoesNotExist,
// the values array must be empty.
// This array is replaced during a strategic merge patch.
// +optional
Values []string
}
// ScopeSelectorOperator is the set of operators that can be used in
// a scope selector requirement.
type ScopeSelectorOperator string
// These are the valid values for ScopeSelectorOperator
const (
ScopeSelectorOpIn ScopeSelectorOperator = "In"
ScopeSelectorOpNotIn ScopeSelectorOperator = "NotIn"
ScopeSelectorOpExists ScopeSelectorOperator = "Exists"
ScopeSelectorOpDoesNotExist ScopeSelectorOperator = "DoesNotExist"
)
// ResourceQuotaStatus defines the enforced hard limits and observed use
type ResourceQuotaStatus struct {
// Hard is the set of enforced hard limits for each named resource
// +optional
Hard ResourceList
// Used is the current observed total usage of the resource in the namespace
// +optional
Used ResourceList
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ResourceQuota sets aggregate quota restrictions enforced per namespace
type ResourceQuota struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Spec defines the desired quota
// +optional
Spec ResourceQuotaSpec
// Status defines the actual enforced quota and its current usage
// +optional
Status ResourceQuotaStatus
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ResourceQuotaList is a list of ResourceQuota items
type ResourceQuotaList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
// Items is a list of ResourceQuota objects
Items []ResourceQuota
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Secret holds secret data of a certain type. The total bytes of the values in
// the Data field must be less than MaxSecretSize bytes.
type Secret struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Immutable field, if set, ensures that data stored in the Secret cannot
// be updated (only object metadata can be modified).
// This is a beta field enabled by ImmutableEphemeralVolumes feature gate.
// +optional
Immutable *bool
// Data contains the secret data. Each key must consist of alphanumeric
// characters, '-', '_' or '.'. The serialized form of the secret data is a
// base64 encoded string, representing the arbitrary (possibly non-string)
// data value here.
// +optional
Data map[string][]byte `datapolicy:"password,security-key,token"`
// Used to facilitate programmatic handling of secret data.
// +optional
Type SecretType
}
// MaxSecretSize represents the max secret size.
const MaxSecretSize = 1 * 1024 * 1024
// SecretType defines the types of secrets
type SecretType string
// These are the valid values for SecretType
const (
// SecretTypeOpaque is the default; arbitrary user-defined data
SecretTypeOpaque SecretType = "Opaque"
// SecretTypeServiceAccountToken contains a token that identifies a service account to the API
//
// Required fields:
// - Secret.Annotations["kubernetes.io/service-account.name"] - the name of the ServiceAccount the token identifies
// - Secret.Annotations["kubernetes.io/service-account.uid"] - the UID of the ServiceAccount the token identifies
// - Secret.Data["token"] - a token that identifies the service account to the API
SecretTypeServiceAccountToken SecretType = "kubernetes.io/service-account-token"
// ServiceAccountNameKey is the key of the required annotation for SecretTypeServiceAccountToken secrets
ServiceAccountNameKey = "kubernetes.io/service-account.name"
// ServiceAccountUIDKey is the key of the required annotation for SecretTypeServiceAccountToken secrets
ServiceAccountUIDKey = "kubernetes.io/service-account.uid"
// ServiceAccountTokenKey is the key of the required data for SecretTypeServiceAccountToken secrets
ServiceAccountTokenKey = "token"
// ServiceAccountKubeconfigKey is the key of the optional kubeconfig data for SecretTypeServiceAccountToken secrets
ServiceAccountKubeconfigKey = "kubernetes.kubeconfig"
// ServiceAccountRootCAKey is the key of the optional root certificate authority for SecretTypeServiceAccountToken secrets
ServiceAccountRootCAKey = "ca.crt"
// ServiceAccountNamespaceKey is the key of the optional namespace to use as the default for namespaced API calls
ServiceAccountNamespaceKey = "namespace"
// SecretTypeDockercfg contains a dockercfg file that follows the same format rules as ~/.dockercfg
//
// Required fields:
// - Secret.Data[".dockercfg"] - a serialized ~/.dockercfg file
SecretTypeDockercfg SecretType = "kubernetes.io/dockercfg"
// DockerConfigKey is the key of the required data for SecretTypeDockercfg secrets
DockerConfigKey = ".dockercfg"
// SecretTypeDockerConfigJSON contains a dockercfg file that follows the same format rules as ~/.docker/config.json
//
// Required fields:
// - Secret.Data[".dockerconfigjson"] - a serialized ~/.docker/config.json file
SecretTypeDockerConfigJSON SecretType = "kubernetes.io/dockerconfigjson"
// DockerConfigJSONKey is the key of the required data for SecretTypeDockerConfigJson secrets
DockerConfigJSONKey = ".dockerconfigjson"
// SecretTypeBasicAuth contains data needed for basic authentication.
//
// Required at least one of fields:
// - Secret.Data["username"] - username used for authentication
// - Secret.Data["password"] - password or token needed for authentication
SecretTypeBasicAuth SecretType = "kubernetes.io/basic-auth"
// BasicAuthUsernameKey is the key of the username for SecretTypeBasicAuth secrets
BasicAuthUsernameKey = "username"
// BasicAuthPasswordKey is the key of the password or token for SecretTypeBasicAuth secrets
BasicAuthPasswordKey = "password"
// SecretTypeSSHAuth contains data needed for SSH authentication.
//
// Required field:
// - Secret.Data["ssh-privatekey"] - private SSH key needed for authentication
SecretTypeSSHAuth SecretType = "kubernetes.io/ssh-auth"
// SSHAuthPrivateKey is the key of the required SSH private key for SecretTypeSSHAuth secrets
SSHAuthPrivateKey = "ssh-privatekey"
// SecretTypeTLS contains information about a TLS client or server secret. It
// is primarily used with TLS termination of the Ingress resource, but may be
// used in other types.
//
// Required fields:
// - Secret.Data["tls.key"] - TLS private key.
// Secret.Data["tls.crt"] - TLS certificate.
// TODO: Consider supporting different formats, specifying CA/destinationCA.
SecretTypeTLS SecretType = "kubernetes.io/tls"
// TLSCertKey is the key for tls certificates in a TLS secret.
TLSCertKey = "tls.crt"
// TLSPrivateKeyKey is the key for the private key field in a TLS secret.
TLSPrivateKeyKey = "tls.key"
// SecretTypeBootstrapToken is used during the automated bootstrap process (first
// implemented by kubeadm). It stores tokens that are used to sign well known
// ConfigMaps. They are used for authn.
SecretTypeBootstrapToken SecretType = "bootstrap.kubernetes.io/token"
)
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// SecretList represents the list of secrets
type SecretList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []Secret
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ConfigMap holds configuration data for components or applications to consume.
type ConfigMap struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// Immutable field, if set, ensures that data stored in the ConfigMap cannot
// be updated (only object metadata can be modified).
// This is a beta field enabled by ImmutableEphemeralVolumes feature gate.
// +optional
Immutable *bool
// Data contains the configuration data.
// Each key must consist of alphanumeric characters, '-', '_' or '.'.
// Values with non-UTF-8 byte sequences must use the BinaryData field.
// The keys stored in Data must not overlap with the keys in
// the BinaryData field, this is enforced during validation process.
// +optional
Data map[string]string
// BinaryData contains the binary data.
// Each key must consist of alphanumeric characters, '-', '_' or '.'.
// BinaryData can contain byte sequences that are not in the UTF-8 range.
// The keys stored in BinaryData must not overlap with the ones in
// the Data field, this is enforced during validation process.
// Using this field will require 1.10+ apiserver and
// kubelet.
// +optional
BinaryData map[string][]byte
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ConfigMapList is a resource containing a list of ConfigMap objects.
type ConfigMapList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
// Items is the list of ConfigMaps.
Items []ConfigMap
}
// These constants are for remote command execution and port forwarding and are
// used by both the client side and server side components.
//
// This is probably not the ideal place for them, but it didn't seem worth it
// to create pkg/exec and pkg/portforward just to contain a single file with
// constants in it. Suggestions for more appropriate alternatives are
// definitely welcome!
const (
// Enable stdin for remote command execution
ExecStdinParam = "input"
// Enable stdout for remote command execution
ExecStdoutParam = "output"
// Enable stderr for remote command execution
ExecStderrParam = "error"
// Enable TTY for remote command execution
ExecTTYParam = "tty"
// Command to run for remote command execution
ExecCommandParam = "command"
// Name of header that specifies stream type
StreamType = "streamType"
// Value for streamType header for stdin stream
StreamTypeStdin = "stdin"
// Value for streamType header for stdout stream
StreamTypeStdout = "stdout"
// Value for streamType header for stderr stream
StreamTypeStderr = "stderr"
// Value for streamType header for data stream
StreamTypeData = "data"
// Value for streamType header for error stream
StreamTypeError = "error"
// Value for streamType header for terminal resize stream
StreamTypeResize = "resize"
// Name of header that specifies the port being forwarded
PortHeader = "port"
// Name of header that specifies a request ID used to associate the error
// and data streams for a single forwarded connection
PortForwardRequestIDHeader = "requestID"
)
// ComponentConditionType defines type and constants for component health validation.
type ComponentConditionType string
// These are the valid conditions for the component.
const (
ComponentHealthy ComponentConditionType = "Healthy"
)
// ComponentCondition represents the condition of a component
type ComponentCondition struct {
Type ComponentConditionType
Status ConditionStatus
// +optional
Message string
// +optional
Error string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ComponentStatus (and ComponentStatusList) holds the cluster validation info.
// Deprecated: This API is deprecated in v1.19+
type ComponentStatus struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// +optional
Conditions []ComponentCondition
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// ComponentStatusList represents the list of component statuses
// Deprecated: This API is deprecated in v1.19+
type ComponentStatusList struct {
metav1.TypeMeta
// +optional
metav1.ListMeta
Items []ComponentStatus
}
// SecurityContext holds security configuration that will be applied to a container.
// Some fields are present in both SecurityContext and PodSecurityContext. When both
// are set, the values in SecurityContext take precedence.
type SecurityContext struct {
// The capabilities to add/drop when running containers.
// Defaults to the default set of capabilities granted by the container runtime.
// +optional
Capabilities *Capabilities
// Run container in privileged mode.
// Processes in privileged containers are essentially equivalent to root on the host.
// Defaults to false.
// +optional
Privileged *bool
// The SELinux context to be applied to the container.
// If unspecified, the container runtime will allocate a random SELinux context for each
// container. May also be set in PodSecurityContext. If set in both SecurityContext and
// PodSecurityContext, the value specified in SecurityContext takes precedence.
// +optional
SELinuxOptions *SELinuxOptions
// The Windows specific settings applied to all containers.
// If unspecified, the options from the PodSecurityContext will be used.
// If set in both SecurityContext and PodSecurityContext, the value specified in SecurityContext takes precedence.
// +optional
WindowsOptions *WindowsSecurityContextOptions
// The UID to run the entrypoint of the container process.
// Defaults to user specified in image metadata if unspecified.
// May also be set in PodSecurityContext. If set in both SecurityContext and
// PodSecurityContext, the value specified in SecurityContext takes precedence.
// +optional
RunAsUser *int64
// The GID to run the entrypoint of the container process.
// Uses runtime default if unset.
// May also be set in PodSecurityContext. If set in both SecurityContext and
// PodSecurityContext, the value specified in SecurityContext takes precedence.
// +optional
RunAsGroup *int64
// Indicates that the container must run as a non-root user.
// If true, the Kubelet will validate the image at runtime to ensure that it
// does not run as UID 0 (root) and fail to start the container if it does.
// If unset or false, no such validation will be performed.
// May also be set in PodSecurityContext. If set in both SecurityContext and
// PodSecurityContext, the value specified in SecurityContext takes precedence.
// +optional
RunAsNonRoot *bool
// The read-only root filesystem allows you to restrict the locations that an application can write
// files to, ensuring the persistent data can only be written to mounts.
// +optional
ReadOnlyRootFilesystem *bool
// AllowPrivilegeEscalation controls whether a process can gain more
// privileges than its parent process. This bool directly controls if
// the no_new_privs flag will be set on the container process.
// +optional
AllowPrivilegeEscalation *bool
// ProcMount denotes the type of proc mount to use for the containers.
// The default is DefaultProcMount which uses the container runtime defaults for
// readonly paths and masked paths.
// +optional
ProcMount *ProcMountType
// The seccomp options to use by this container. If seccomp options are
// provided at both the pod & container level, the container options
// override the pod options.
// +optional
SeccompProfile *SeccompProfile
}
// ProcMountType defines the type of proc mount
type ProcMountType string
const (
// DefaultProcMount uses the container runtime defaults for readonly and masked
// paths for /proc. Most container runtimes mask certain paths in /proc to avoid
// accidental security exposure of special devices or information.
DefaultProcMount ProcMountType = "Default"
// UnmaskedProcMount bypasses the default masking behavior of the container
// runtime and ensures the newly created /proc the container stays intact with
// no modifications.
UnmaskedProcMount ProcMountType = "Unmasked"
)
// SELinuxOptions are the labels to be applied to the container.
type SELinuxOptions struct {
// SELinux user label
// +optional
User string
// SELinux role label
// +optional
Role string
// SELinux type label
// +optional
Type string
// SELinux level label.
// +optional
Level string
}
// WindowsSecurityContextOptions contain Windows-specific options and credentials.
type WindowsSecurityContextOptions struct {
// GMSACredentialSpecName is the name of the GMSA credential spec to use.
// +optional
GMSACredentialSpecName *string
// GMSACredentialSpec is where the GMSA admission webhook
// (https://github.com/kubernetes-sigs/windows-gmsa) inlines the contents of the
// GMSA credential spec named by the GMSACredentialSpecName field.
// +optional
GMSACredentialSpec *string
// The UserName in Windows to run the entrypoint of the container process.
// Defaults to the user specified in image metadata if unspecified.
// May also be set in PodSecurityContext. If set in both SecurityContext and
// PodSecurityContext, the value specified in SecurityContext takes precedence.
// +optional
RunAsUserName *string
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// RangeAllocation is an opaque API object (not exposed to end users) that can be persisted to record
// the global allocation state of the cluster. The schema of Range and Data generic, in that Range
// should be a string representation of the inputs to a range (for instance, for IP allocation it
// might be a CIDR) and Data is an opaque blob understood by an allocator which is typically a
// binary range. Consumers should use annotations to record additional information (schema version,
// data encoding hints). A range allocation should *ALWAYS* be recreatable at any time by observation
// of the cluster, thus the object is less strongly typed than most.
type RangeAllocation struct {
metav1.TypeMeta
// +optional
metav1.ObjectMeta
// A string representing a unique label for a range of resources, such as a CIDR "10.0.0.0/8" or
// port range "10000-30000". Range is not strongly schema'd here. The Range is expected to define
// a start and end unless there is an implicit end.
Range string
// A byte array representing the serialized state of a range allocation. Additional clarifiers on
// the type or format of data should be represented with annotations. For IP allocations, this is
// represented as a bit array starting at the base IP of the CIDR in Range, with each bit representing
// a single allocated address (the fifth bit on CIDR 10.0.0.0/8 is 10.0.0.4).
Data []byte
}
const (
// DefaultSchedulerName defines the name of default scheduler.
DefaultSchedulerName = "default-scheduler"
// DefaultHardPodAffinitySymmetricWeight is the weight of implicit PreferredDuringScheduling affinity rule.
//
// RequiredDuringScheduling affinity is not symmetric, but there is an implicit PreferredDuringScheduling affinity rule
// corresponding to every RequiredDuringScheduling affinity rule.
// When the --hard-pod-affinity-weight scheduler flag is not specified,
// DefaultHardPodAffinityWeight defines the weight of the implicit PreferredDuringScheduling affinity rule.
DefaultHardPodAffinitySymmetricWeight int32 = 1
)
// UnsatisfiableConstraintAction defines the actions that can be taken for an
// unsatisfiable constraint.
type UnsatisfiableConstraintAction string
const (
// DoNotSchedule instructs the scheduler not to schedule the pod
// when constraints are not satisfied.
DoNotSchedule UnsatisfiableConstraintAction = "DoNotSchedule"
// ScheduleAnyway instructs the scheduler to schedule the pod
// even if constraints are not satisfied.
ScheduleAnyway UnsatisfiableConstraintAction = "ScheduleAnyway"
)
// TopologySpreadConstraint specifies how to spread matching pods among the given topology.
type TopologySpreadConstraint struct {
// MaxSkew describes the degree to which pods may be unevenly distributed.
// When `whenUnsatisfiable=DoNotSchedule`, it is the maximum permitted difference
// between the number of matching pods in the target topology and the global minimum.
// For example, in a 3-zone cluster, MaxSkew is set to 1, and pods with the same
// labelSelector spread as 1/1/0:
// +-------+-------+-------+
// | zone1 | zone2 | zone3 |
// +-------+-------+-------+
// | P | P | |
// +-------+-------+-------+
// - if MaxSkew is 1, incoming pod can only be scheduled to zone3 to become 1/1/1;
// scheduling it onto zone1(zone2) would make the ActualSkew(2-0) on zone1(zone2)
// violate MaxSkew(1).
// - if MaxSkew is 2, incoming pod can be scheduled onto any zone.
// When `whenUnsatisfiable=ScheduleAnyway`, it is used to give higher precedence
// to topologies that satisfy it.
// It's a required field. Default value is 1 and 0 is not allowed.
MaxSkew int32
// TopologyKey is the key of node labels. Nodes that have a label with this key
// and identical values are considered to be in the same topology.
// We consider each <key, value> as a "bucket", and try to put balanced number
// of pods into each bucket.
// It's a required field.
TopologyKey string
// WhenUnsatisfiable indicates how to deal with a pod if it doesn't satisfy
// the spread constraint.
// - DoNotSchedule (default) tells the scheduler not to schedule it.
// - ScheduleAnyway tells the scheduler to schedule the pod in any location,
// but giving higher precedence to topologies that would help reduce the
// skew.
// A constraint is considered "Unsatisfiable" for an incoming pod
// if and only if every possible node assigment for that pod would violate
// "MaxSkew" on some topology.
// For example, in a 3-zone cluster, MaxSkew is set to 1, and pods with the same
// labelSelector spread as 3/1/1:
// +-------+-------+-------+
// | zone1 | zone2 | zone3 |
// +-------+-------+-------+
// | P P P | P | P |
// +-------+-------+-------+
// If WhenUnsatisfiable is set to DoNotSchedule, incoming pod can only be scheduled
// to zone2(zone3) to become 3/2/1(3/1/2) as ActualSkew(2-1) on zone2(zone3) satisfies
// MaxSkew(1). In other words, the cluster can still be imbalanced, but scheduler
// won't make it *more* imbalanced.
// It's a required field.
WhenUnsatisfiable UnsatisfiableConstraintAction
// LabelSelector is used to find matching pods.
// Pods that match this label selector are counted to determine the number of pods
// in their corresponding topology domain.
// +optional
LabelSelector *metav1.LabelSelector
}
// These are the built-in errors for PortStatus.
const (
// MixedProtocolNotSupported error in PortStatus means that the cloud provider
// can't ensure the port on the load balancer because mixed values of protocols
// on the same LoadBalancer type of Service are not supported by the cloud provider.
MixedProtocolNotSupported = "MixedProtocolNotSupported"
)
// PortStatus represents the error condition of a service port
type PortStatus struct {
// Port is the port number of the service port of which status is recorded here
Port int32
// Protocol is the protocol of the service port of which status is recorded here
Protocol Protocol
// Error is to record the problem with the service port
// The format of the error shall comply with the following rules:
// - built-in error values shall be specified in this file and those shall use
// CamelCase names
// - cloud provider specific error values must have names that comply with the
// format foo.example.com/CamelCase.
// ---
// The regex it matches is (dns1123SubdomainFmt/)?(qualifiedNameFmt)
// +optional
// +kubebuilder:validation:Required
// +kubebuilder:validation:Pattern=`^([a-z0-9]([-a-z0-9]*[a-z0-9])?(\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*/)?(([A-Za-z0-9][-A-Za-z0-9_.]*)?[A-Za-z0-9])$`
// +kubebuilder:validation:MaxLength=316
Error *string
}
ew file mode 100644
ndex 0000000000000..2e20bd610c372
++ b/pkg/apis/core/v1/BUILD
decide on maximum length. Mapped to events.Event.note
+optional
https://github.com/pacoxu/kubernetes/blob/dcda0387af0ea90a12524700d42c672eaa37b964/pkg/apis/core/types.go#L4647
d6bae1c7f3ea8d7ba7fd1e816e84fabe70fa47de