pandas-dev / pandas

Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more
https://pandas.pydata.org
BSD 3-Clause "New" or "Revised" License
43.9k stars 18.03k forks source link

Odd behaviour when slicing Pandas dataframe with numeric column headings #15824

Open lvphj opened 7 years ago

lvphj commented 7 years ago

This is a copy of a question I asked at http://stackoverflow.com/questions/43058734/odd-behaviour-when-slicing-pandas-dataframe-with-numeric-column-headings as suggested by a comment.

Consider a Pandas dataframe containing case-control data that can be represented by the following structure:

       caseA  caseN catA
    0      y      1    a
    1      y      1    a
    2      y      1    b
    3      y      1    b
    4      y      1    c
    5      y      1    d
    6      y      1    a
    7      y      1    c
    8      n      0    c
    9      n      0    d
    10     n      0    a
    11     n      0    b
    12     n      0    c
    13     n      0    a
    14     n      0    d
    15     n      0    a
    16     n      0    b
    17     n      0    c
    18     n      0    a
    19     n      0    d

The caseA and caseN variables represent cases and controls as strings and integers, respectively.

I can calculate a 2x2 table to facilitate the calculation of odds and odds ratios using the pandas crosstab method. The default order of the columns is control-case but I change this to case-control which, to my way of thinking, is a bit more intuitive. (This stage may not be relevant to the issue but illustrates the need for changing the order of the columns.)

I then slice the dataframe to print just a select number of rows with columns in the order case - control. This works exactly as expected.

However, if I add a new column to the dataframe (e.g. a column containing the odds values) and then slice the dataframe in exactly the same way, the cases and controls are printed in the wrong order.

The following code snippet illustrates this point:

    df = pd.DataFrame({'caseN':[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
                       'caseA':['y','y','y','y','y','y','y','y','n','n','n','n','n','n','n','n','n','n','n','n'],
                       'catA':['a','a','b','b','c','d','a','c','c','d','a','b','c','a','d','a','b','c','a','d']})

    print('\nCross tabulation\n')
    continTab = pd.crosstab(df['catA'],df['caseN'])
    print(continTab)

    print('\nReorderd cross tabulation\n')
    continTab = continTab[[1,0]]
    print(continTab)

    #print('\n<-- An extra column containg odds has been entered here -->')
    #continTab['odds'] = continTab[1]/continTab[0]

    print('\nPrint just a slice contains rows a and c only with 1 - 0 column order\n')
    print(continTab.loc[['a','c'],[1,0]])

On the first run through (with no additional columns added) the sliced table produced is just as expected:

    caseN  1  0
    catA       
    a      3  4
    c      2  3

But if you uncomment the code that calculates the odds column and then re-run the exact same code, the sliced table produced has the column order reversed:

    caseN  0  1
    catA       
    a      4  3
    c      3  2

However, repeating the process using the case-control data described as strings (as found in variable caseA) produces the correct results, just as expected.

Output of pd.show_versions()

# Paste the output here pd.show_versions() here INSTALLED VERSIONS ------------------ commit: None python: 3.4.1.final.0 python-bits: 64 OS: Darwin OS-release: 15.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 pandas: 0.19.2 nose: 1.3.7 pip: 1.5.6 setuptools: 3.6 Cython: None numpy: 1.12.0 scipy: None statsmodels: None xarray: None IPython: 4.0.0 sphinx: None patsy: None dateutil: 2.6.0 pytz: 2016.10 blosc: None bottleneck: None tables: None numexpr: None matplotlib: 1.4.3 openpyxl: 2.3.0 xlrd: None xlwt: None xlsxwriter: None lxml: None bs4: None html5lib: None httplib2: None apiclient: None sqlalchemy: None pymysql: 0.7.5.None psycopg2: None jinja2: 2.8 boto: None pandas_datareader: None
jorisvandenbossche commented 7 years ago

Smaller example(without the case study context, not needed to reproduce):

In [45]: df = pd.DataFrame(np.arange(9).reshape(3, 3))

In [46]: df
Out[46]: 
   0  1  2
0  0  1  2
1  3  4  5
2  6  7  8

In [47]: df.loc[[0,1], [1, 0]]
Out[47]: 
   1  0
0  1  0
1  4  3

In [48]: df.columns = [1, 0, 'str']

In [49]: df
Out[49]: 
   1  0  str
0  0  1    2
1  3  4    5
2  6  7    8

In [50]: df.loc[[0,1], [1, 0]]     ## <----- this is 'wrong'
Out[50]: 
   0  1
0  1  0
1  4  3

In [51]: df.loc[:, [1, 0]]    ## <----- but it works correctly when index is sliced
Out[51]: 
   1  0
0  0  1
1  3  4
2  6  7

In [52]: df.columns = [ 0, 1, 'str']  ## and also works when the integers 
                                      ## in the mixed index are in sorted

In [53]: df
Out[53]: 
   0  1  str
0  0  1    2
1  3  4    5
2  6  7    8

In [54]: df.loc[[0,1], [1, 0]]
Out[54]: 
   1  0
0  1  0
1  4  3
jreback commented 7 years ago

cc @toobaz if you are interested

toobaz commented 7 years ago

@jreback sure, thanks, I took a note of this for a future PR (my next one shouldn't directly touch indexing code)