Closed rsignell-usgs closed 6 years ago
You may want to tag people you think would be best at reviewing this.
@ocefpaf, can you please review, perhaps by logging into pangeo.esipfed.org and trying it out? You should find it in the examples folder.
LGTM. I ran it without any problems.
I wonder if there is any xarray
magic alternative to the near
function you use there. It looks like .sel
won't work b/c x
and y
are not indexes (dims
), only node
. (This is a place where where iris data model is better than xarray
.)
BTW, I usually OK with jet
for temperature data but you can probably use a better colormap there.
Came here to also raise the use of jet
. Ping @niallrobinson
Does this work on pangeo.pydata.org?
It does if you install geoviews
:
I installed geoviews
from the pyviz dev channel because the geoviews
from the defaults channel wanted to downgrade my netcdf
.
jovyan@jupyter-rsignell-2dusgs:~$ conda install -c pyviz/label/dev geoviews
Solving environment: done
## Package Plan ##
environment location: /opt/conda
added / updated specs:
- geoviews
The following packages will be downloaded:
package | build
---------------------------|-----------------
geos-3.6.2 | heeff764_2 1.6 MB defaults
libspatialindex-1.8.5 | h20b78c2_2 666 KB defaults
poppler-0.65.0 | h581218d_1 1.6 MB defaults
click-plugins-1.0.3 | py36_0 10 KB defaults
openssl-1.0.2p | h14c3975_0 3.5 MB defaults
geoviews-core-1.5.4a5 | py_0 344 KB pyviz/label/dev
libkml-1.3.0 | h590aaf7_4 633 KB defaults
cligj-0.4.0 | py36_0 14 KB defaults
gdal-2.2.2 | py36hc209d97_1 767 KB defaults
pyproj-1.9.5.1 | py36h7b21b82_1 64 KB defaults
libdap4-3.19.1 | h6ec2957_0 1.5 MB defaults
lxml-4.2.4 | py36hf71bdeb_0 1.6 MB defaults
kealib-1.4.7 | h77bc034_6 170 KB defaults
munch-2.3.2 | py36_0 13 KB defaults
descartes-1.1.0 | py36_0 9 KB defaults
giflib-5.1.4 | h14c3975_1 78 KB defaults
pysal-1.14.4.post1 | py36_1 14.9 MB defaults
psycopg2-2.7.5 | py36hb7f436b_0 294 KB defaults
libpq-10.5 | h1ad7b7a_0 2.7 MB defaults
libxslt-1.1.32 | h1312cb7_0 538 KB defaults
krb5-1.16.1 | hc83ff2d_6 1.4 MB defaults
geoviews-1.5.4a5 | py_0 3 KB pyviz/label/dev
proj4-5.0.1 | h14c3975_0 7.0 MB defaults
shapely-1.6.4 | py36h7ef4460_0 326 KB defaults
cartopy-0.16.0 | py36hfa13621_0 1.7 MB defaults
owslib-0.16.0 | py36_0 235 KB defaults
poppler-data-0.4.9 | 0 3.5 MB defaults
libgdal-2.2.4 | h6f639c0_1 16.1 MB defaults
xerces-c-3.2.1 | hac72e42_0 3.2 MB defaults
pyshp-1.2.12 | py36_0 35 KB defaults
fiona-1.7.12 | py36h3f37509_0 704 KB defaults
libboost-1.67.0 | h46d08c1_4 20.9 MB defaults
freexl-1.0.5 | h14c3975_0 44 KB defaults
openjpeg-2.3.0 | h05c96fa_1 456 KB defaults
rtree-0.8.3 | py36_0 46 KB defaults
pyepsg-0.3.2 | py36_0 12 KB defaults
geopandas-0.3.0 | py36_0 924 KB defaults
json-c-0.13.1 | h1bed415_0 70 KB defaults
libspatialite-4.3.0a | he475c7f_19 3.1 MB defaults
------------------------------------------------------------
Total: 90.7 MB
The following NEW packages will be INSTALLED:
cartopy: 0.16.0-py36hfa13621_0 defaults
click-plugins: 1.0.3-py36_0 defaults
cligj: 0.4.0-py36_0 defaults
descartes: 1.1.0-py36_0 defaults
fiona: 1.7.12-py36h3f37509_0 defaults
freexl: 1.0.5-h14c3975_0 defaults
gdal: 2.2.2-py36hc209d97_1 defaults
geopandas: 0.3.0-py36_0 defaults
geos: 3.6.2-heeff764_2 defaults
geoviews: 1.5.4a5-py_0 pyviz/label/dev
geoviews-core: 1.5.4a5-py_0 pyviz/label/dev
giflib: 5.1.4-h14c3975_1 defaults
json-c: 0.13.1-h1bed415_0 defaults
kealib: 1.4.7-h77bc034_6 defaults
krb5: 1.16.1-hc83ff2d_6 defaults
libboost: 1.67.0-h46d08c1_4 defaults
libdap4: 3.19.1-h6ec2957_0 defaults
libgdal: 2.2.4-h6f639c0_1 defaults
libkml: 1.3.0-h590aaf7_4 defaults
libpq: 10.5-h1ad7b7a_0 defaults
libspatialindex: 1.8.5-h20b78c2_2 defaults
libspatialite: 4.3.0a-he475c7f_19 defaults
libxslt: 1.1.32-h1312cb7_0 defaults
lxml: 4.2.4-py36hf71bdeb_0 defaults
munch: 2.3.2-py36_0 defaults
openjpeg: 2.3.0-h05c96fa_1 defaults
owslib: 0.16.0-py36_0 defaults
poppler: 0.65.0-h581218d_1 defaults
poppler-data: 0.4.9-0 defaults
proj4: 5.0.1-h14c3975_0 defaults
psycopg2: 2.7.5-py36hb7f436b_0 defaults
pyepsg: 0.3.2-py36_0 defaults
pyproj: 1.9.5.1-py36h7b21b82_1 defaults
pysal: 1.14.4.post1-py36_1 defaults
pyshp: 1.2.12-py36_0 defaults
rtree: 0.8.3-py36_0 defaults
shapely: 1.6.4-py36h7ef4460_0 defaults
xerces-c: 3.2.1-hac72e42_0 defaults
The following packages will be UPDATED:
openssl: 1.0.2o-h14c3975_1 defaults --> 1.0.2p-h14c3975_0 defaults
Proceed ([y]/n)? y
Downloading and Extracting Packages
geos-3.6.2 | 1.6 MB | ##################################################################################### | 100%
libspatialindex-1.8. | 666 KB | ##################################################################################### | 100%
poppler-0.65.0 | 1.6 MB | ##################################################################################### | 100%
click-plugins-1.0.3 | 10 KB | ##################################################################################### | 100%
openssl-1.0.2p | 3.5 MB | ##################################################################################### | 100%
geoviews-core-1.5.4a | 344 KB | ##################################################################################### | 100%
libkml-1.3.0 | 633 KB | ##################################################################################### | 100%
cligj-0.4.0 | 14 KB | ##################################################################################### | 100%
gdal-2.2.2 | 767 KB | ##################################################################################### | 100%
pyproj-1.9.5.1 | 64 KB | ##################################################################################### | 100%
libdap4-3.19.1 | 1.5 MB | ##################################################################################### | 100%
lxml-4.2.4 | 1.6 MB | ##################################################################################### | 100%
kealib-1.4.7 | 170 KB | ##################################################################################### | 100%
munch-2.3.2 | 13 KB | ##################################################################################### | 100%
descartes-1.1.0 | 9 KB | ##################################################################################### | 100%
giflib-5.1.4 | 78 KB | ##################################################################################### | 100%
pysal-1.14.4.post1 | 14.9 MB | ##################################################################################### | 100%
psycopg2-2.7.5 | 294 KB | ##################################################################################### | 100%
libpq-10.5 | 2.7 MB | ##################################################################################### | 100%
libxslt-1.1.32 | 538 KB | ##################################################################################### | 100%
krb5-1.16.1 | 1.4 MB | ##################################################################################### | 100%
geoviews-1.5.4a5 | 3 KB | ##################################################################################### | 100%
proj4-5.0.1 | 7.0 MB | ##################################################################################### | 100%
shapely-1.6.4 | 326 KB | ##################################################################################### | 100%
cartopy-0.16.0 | 1.7 MB | ##################################################################################### | 100%
owslib-0.16.0 | 235 KB | ##################################################################################### | 100%
poppler-data-0.4.9 | 3.5 MB | ##################################################################################### | 100%
libgdal-2.2.4 | 16.1 MB | ##################################################################################### | 100%
xerces-c-3.2.1 | 3.2 MB | ##################################################################################### | 100%
pyshp-1.2.12 | 35 KB | ##################################################################################### | 100%
fiona-1.7.12 | 704 KB | ##################################################################################### | 100%
libboost-1.67.0 | 20.9 MB | ##################################################################################### | 100%
freexl-1.0.5 | 44 KB | ##################################################################################### | 100%
openjpeg-2.3.0 | 456 KB | ##################################################################################### | 100%
rtree-0.8.3 | 46 KB | ##################################################################################### | 100%
pyepsg-0.3.2 | 12 KB | ##################################################################################### | 100%
geopandas-0.3.0 | 924 KB | ##################################################################################### | 100%
json-c-0.13.1 | 70 KB | ##################################################################################### | 100%
libspatialite-4.3.0a | 3.1 MB | ##################################################################################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
@rsignell-usgs rainbow is also not acceptable (I thought it was just another name for jet). I recommend you explore colour maps without discontinuities such as the brewer maps.
Also see this article
I understand that rainbow
is not perceptually correct. But I also know that if I use viridis
or magma
I can't see the variability. The colorbar is right there if people want to see the actual value.
I'm going to continue to use the colormap I selected in demos I give. I guess pangeo can change it here if they want.
I guess the point is are you actually seeing variability, or are you seeing an artifact of the colour map.
BTW, I usually OK with jet for temperature data but you can probably use a better colormap there.
When I made this comment I meant it to be taken with a grain of salt. I understand all the issues with jet
, rainbow
, etc. I actually started a perceptually correct set of colormaps for a really old project a long time ago back in 2006, before viridis
and cmocean
, never got people to adopt it though b/c there was not a "community will" to change at the time. Ironically my "bad" colormaps are far more popular. (Those are from my MatLab days and I guess some are actually @rsignell-usgs colormaps.)
With that said, I would like to emphasize that I am OK with jet
-like colormaps for oceanographic variables, specially for SST. There are very few perceptually "correct colomaps" that show the nice hot-to-cold feel. It is important to note that these variables are not brain scans, where artifacts may be a problem with your science.
BTW, I never saw any oceanographic science related issue with a jet-colored SST, we use the actual values for science, the image is only to illustrate the big picture.
(Just read a paper on meso-scale turbulence with black-n-white SST images and a single jet-colored version of the averaged images. I did not find any problem trusting the science just b/c the images where horrible. Again, the science was done with the numbers and not the images.)
TL;DR let's avoid the herd-phenomena of bashing jet and leave some room for freedom of choice in a notebook where the main goal is to demonstrate tri-mesh manipulation :wink:
I myself am committed to better images but I don't think the use of jet
or rainbow
is as terrible as people are making it to be.
So the only thing holding this up from working is installing geoviews on pangeo.pydata.org.
Is there an issue for that?
I've updated this PR and tested that everything runs on the pangeo binder:
I stripped the output from my hurricane trimesh notebook, and added hvplot
interactive graphics to the sea level rise notebook, which I think is pretty cool:
To have these run on pangeo.pydata.org, we would need to add at least hvplot
and geoviews
.
Note that we construct the environment.yml here a bit differently than on pangeo.pydata.org's Dockerfile. On the recommendation of @ocefpaf, we specify only the conda-forge
channel at the top, and then specify the specific packages that unfortunately still need the custom intake
or pyviz
channels.
Add Hurricane Ike trimesh example from pangeo.esipfed.org