Open paolodelia99 opened 4 months ago
This is the documentation
mylibrary/
├── include/
│ └── mylibrary.h
├── src/
│ ├── mylibrary.cpp
│ └── mylibrary_cuda.cu
├── CMakeLists.txt
└── main.cpp
Header File (mylibrary.h
)
#ifndef MYLIBRARY_H
#define MYLIBRARY_H
void runParallelOperation(float *data, int size);
#endif // MYLIBRARY_H
C++ Source file (mylibrary.cpp
)
#include "mylibrary.h"
#include <cuda_runtime.h>
#include <iostream>
void runParallelOperation(float *data, int size) {
float *deviceArray;
// Allocate memory on the device
cudaMalloc((void**)&deviceArray, size * sizeof(float));
// Copy data from host to device
cudaMemcpy(deviceArray, data, size * sizeof(float), cudaMemcpyHostToDevice);
// Define grid and block size
int threadsPerBlock = 256;
int numBlocks = (size + threadsPerBlock - 1) / threadsPerBlock;
// Launch the CUDA kernel
myKernel<<<numBlocks, threadsPerBlock>>>(deviceArray, size);
// Copy results from device to host
cudaMemcpy(data, deviceArray, size * sizeof(float), cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(deviceArray);
}
extern "C" void myKernel(float *d_array, int size); // Declaration of CUDA kernel
CUDA source File (mylibrary_cuda.cu
)
#include <cuda_runtime.h>
#include <iostream>
__global__ void myKernel(float *d_array, int size) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < size) {
d_array[idx] = d_array[idx] * 2.0f; // Example operation
}
}
Don't know Cuda to the degree that I'm able alone to implement this feature. Put this ticket on hold for the time being, and implement the CPP code for the code simulations.
Found some interesting resources:
Implement an MC engine for pricing a European spread option leveraging CUDA.
Details of the implementation
Don't know, I have to learn Cuda a little bit.