Visualkeras is a Python package to help visualize Keras (either standalone or included in TensorFlow) neural network architectures. It allows easy styling to fit most needs. This module supports layered style architecture generation which is great for CNNs (Convolutional Neural Networks), and a graph style architecture, which works great for most models including plain feed-forward networks.
Minimal Code To Reproduce
out = inp = Input(shape=(SEGLEN, 1))
Initialize cnn layer
out = Conv1D(filters=nfilt, kernel_size=filtsize, padding='same')(out)
Multilayer conv
for i in range(clayer):
out = Conv1D(filters=nfilt, kernel_size=filtsize, padding='same', activation='relu')(out)
out = MaxPooling1D(poolsize, padding='same')(out)
if pooltype == "avg":
out = GlobalAveragePooling1D()(out)
else:
out = GlobalMaxPooling1D()(out)
if droprate:
out = Dropout(droprate)(out)
out = Dense(fnode)(out)
if droprate:
out = Dropout(droprate)(out)
out = Dense(1)(out)
model = Model(inputs=[inp], outputs=[out])
Minimal Code To Reproduce out = inp = Input(shape=(SEGLEN, 1))
Initialize cnn layer
out = Conv1D(filters=nfilt, kernel_size=filtsize, padding='same')(out)
Multilayer conv
for i in range(clayer): out = Conv1D(filters=nfilt, kernel_size=filtsize, padding='same', activation='relu')(out) out = MaxPooling1D(poolsize, padding='same')(out) if pooltype == "avg": out = GlobalAveragePooling1D()(out) else: out = GlobalMaxPooling1D()(out) if droprate: out = Dropout(droprate)(out) out = Dense(fnode)(out) if droprate: out = Dropout(droprate)(out) out = Dense(1)(out) model = Model(inputs=[inp], outputs=[out])
Errorr TypeError Traceback (most recent call last) in
1 import visualkeras
----> 2 visualkeras.layered_view(model)
/usr/local/lib/python3.8/dist-packages/visualkeras/layered.py in layered_view(model, to_file, min_z, min_xy, max_z, max_xy, scale_z, scale_xy, type_ignore, index_ignore, color_map, one_dim_orientation, background_fill, draw_volume, padding, spacing, draw_funnel, shade_step, legend, font, font_color) 98 x = min(max(shape[1] scale_xy, x), max_xy) 99 y = min(max(shape[2] scale_xy, y), max_xy) --> 100 z = min(max(z), max_z) 101 elif len(shape) == 2: 102 if one_dim_orientation == 'x':
TypeError: 'int' object is not iterable
Environment (please complete the following information): colab