💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram
add text() to several query in models.py and I met below problems
💽 Building models in Postgres ..
wait-for-it.sh: waiting 60 seconds for db:5432 to be available (tcp)
wait-for-it.sh: db:5432 is available after 0 seconds
INFO:config:...Enabling pgvector and creating database tables
...Enabling pgvector and creating database tables
Traceback (most recent call last):
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1969, in _exec_single_context
self.dialect.do_execute(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 922, in do_execute
cursor.execute(statement, parameters)
psycopg2.errors.InvalidParameterValue: dimensions for type vector cannot exceed 1024
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/app/api/models.py", line 665, in
create_db()
File "/app/api/models.py", line 588, in create_db
enable_vector()
File "/app/api/models.py", line 625, in enable_vector
add_vector_distance_fn(session)
File "/app/api/models.py", line 658, in add_vector_distance_fn
session.exec(query)
File "/usr/local/lib/python3.9/site-packages/sqlmodel/orm/session.py", line 68, in exec
results = super().execute(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 2308, in execute
return self._execute_internal(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 2199, in _execute_internal
result = conn.execute(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1416, in execute
return meth(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/sql/elements.py", line 516, in _execute_on_connection
return connection._execute_clauseelement(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1639, in _execute_clauseelement
ret = self._execute_context(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1848, in _execute_context
return self._exec_single_context(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1988, in _exec_single_context
self._handle_dbapi_exception(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 2343, in _handle_dbapi_exception
raise sqlalchemy_exception.with_traceback(exc_info[2]) from e
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1969, in _exec_single_context
self.dialect.do_execute(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 922, in do_execute
cursor.execute(statement, parameters)
sqlalchemy.exc.DataError: (psycopg2.errors.InvalidParameterValue) dimensions for type vector cannot exceed 1024
[SQL: create or replace function match_node_euclidean (
query_embeddings vector(1536),
match_threshold float,
match_count int
) returns table (
uuid uuid,
text varchar,
similarity float
)
language plpgsql
as $$
begin
return query
select
node.uuid,
node.text,
1 - (node.embeddings <-> query_embeddings) as similarity
from node
where 1 - (node.embeddings <-> query_embeddings) > match_threshold
order by similarity desc
limit match_count;
end;
$$;]
(Background on this error at: https://sqlalche.me/e/20/9h9h)
make[1]: [models] Error 1
make: [install] Error 2
add text() to several query in models.py and I met below problems
💽 Building models in Postgres ..
wait-for-it.sh: waiting 60 seconds for db:5432 to be available (tcp) wait-for-it.sh: db:5432 is available after 0 seconds INFO:config:...Enabling pgvector and creating database tables ...Enabling pgvector and creating database tables Traceback (most recent call last): File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1969, in _exec_single_context self.dialect.do_execute( File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 922, in do_execute cursor.execute(statement, parameters)
The above exception was the direct cause of the following exception:
Traceback (most recent call last): File "/app/api/models.py", line 665, in
create_db()
File "/app/api/models.py", line 588, in create_db
enable_vector()
File "/app/api/models.py", line 625, in enable_vector
add_vector_distance_fn(session)
File "/app/api/models.py", line 658, in add_vector_distance_fn
session.exec(query)
File "/usr/local/lib/python3.9/site-packages/sqlmodel/orm/session.py", line 68, in exec
results = super().execute(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 2308, in execute
return self._execute_internal(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/orm/session.py", line 2199, in _execute_internal
result = conn.execute(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1416, in execute
return meth(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/sql/elements.py", line 516, in _execute_on_connection
return connection._execute_clauseelement(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1639, in _execute_clauseelement
ret = self._execute_context(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1848, in _execute_context
return self._exec_single_context(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1988, in _exec_single_context
self._handle_dbapi_exception(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 2343, in _handle_dbapi_exception
raise sqlalchemy_exception.with_traceback(exc_info[2]) from e
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/base.py", line 1969, in _exec_single_context
self.dialect.do_execute(
File "/usr/local/lib/python3.9/site-packages/sqlalchemy/engine/default.py", line 922, in do_execute
cursor.execute(statement, parameters)
sqlalchemy.exc.DataError: (psycopg2.errors.InvalidParameterValue) dimensions for type vector cannot exceed 1024
[SQL: create or replace function match_node_euclidean ( query_embeddings vector(1536), match_threshold float, match_count int ) returns table ( uuid uuid, text varchar, similarity float ) language plpgsql as $$ begin return query select node.uuid, node.text, 1 - (node.embeddings <-> query_embeddings) as similarity from node where 1 - (node.embeddings <-> query_embeddings) > match_threshold order by similarity desc limit match_count; end; $$;] (Background on this error at: https://sqlalche.me/e/20/9h9h) make[1]: [models] Error 1 make: [install] Error 2