Closed xiemark closed 4 years ago
I change the model to the code listed below, `from utils import util_processor as pro
def get_model(params): model = Sequential()
# Conv1 model.add(Conv2D(64, (5, 5), input_shape=(10, 10, 4), padding='same', strides=(1,1))) model.add(Activation('sigmoid')) # Conv2 model.add(Conv2D(64, (5, 5), padding='same', strides=(1,1))) model.add(Activation('sigmoid')) # FC model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(params['classes'])) model.add(Activation('softmax')) model.summary() return model
`
The result improves a lot!
Total results > Label 1 : 1171 / 1500 78.1% Total results > Label 2 : 1024 / 1500 68.3% Total results > Label 3 : 1221 / 1500 81.4% Total results > Label 4 : 1454 / 1500 96.9% Total results > Label 5 : 783 / 1500 52.2% Total results > Label 6 : 1055 / 1500 70.3% Total results > Label 7 : 1312 / 1500 87.5% Total results > Label 8 : 1280 / 1500 85.3%
Total results > Label 1 : 1171 / 1500 78.1%
Total results > Label 2 : 1024 / 1500 68.3%
Total results > Label 3 : 1221 / 1500 81.4%
Total results > Label 4 : 1454 / 1500 96.9%
Total results > Label 5 : 783 / 1500 52.2%
Total results > Label 6 : 1055 / 1500 70.3%
Total results > Label 7 : 1312 / 1500 87.5%
Total results > Label 8 : 1280 / 1500 85.3%
I change the model to the code listed below, `from utils import util_processor as pro
def get_model(params): model = Sequential()
`
The result improves a lot!