peiva-git / deep_learning_project

Exam project for the Deep Learning course @ UniTS
GNU General Public License v3.0
0 stars 0 forks source link

Add "RENOIR" dataset #14

Closed FedericoCalandra closed 1 year ago

FedericoCalandra commented 1 year ago
  1. Smartphone Image Denoising Dataset (SIDD)

160 image pairs (noisy and ground-truth) representing 160 scene instances. These images can be used for training/learning purposes.

For each image, the following is provided:

Noisy Raw-RGB image (.MAT). Ground truth Raw-RGB image (.MAT). Noisy sRGB image (.PNG). Ground truth sRGB image (.PNG). Metadata extracted from the DNG file (.MAT).

SIDD dataset available at this link


  1. Real Low-Light Image Noise Reduction Dataset (RENOIR)

Dataset of images corrupted by real low-light noise together with pixel and intensity aligned clean images. It contains about 500 images of 120 scenes that have been collected in low-light setting using three cameras: Cannon T3i, Cannon S90 and a Xiaomi MI3 mobile phone. The dataset is quite large since the images have the original sensor resolution, so each image has about 10 megapixels.

RENOIR dataset available at this link

FedericoCalandra commented 1 year ago

I datasets sono molto grandi (circa 12 GB). Meglio importare solo SIDD in versione ridotta (160 immagini). In questo caso siamo sui 6,2 GB.

peiva-git commented 1 year ago

I due link sono esattamente uguali, probabilmente un errore?

FedericoCalandra commented 1 year ago

Ho sostituito il link con quello corretto

FedericoCalandra commented 1 year ago

Opto per il dataset RENOIR perché SIDD viene usato per addestrare diversi modelli reali (CBDNet, NBNet) e non potremmo quindi utilizzarlo per la fase di test