peter-u-diehl / stdp-mnist

331 stars 139 forks source link

Is there Brian2 version of this implementation? How is the Lateral Inhibition or Winner Take All connection from Inhibitory layer to Excitatory layer achieved #8

Open ashwin4ever opened 5 years ago

ashwin4ever commented 5 years ago

How is the lateral inhibition achieved in the below code

for conn_type in recurrent_conn_names:
        connName = name+conn_type[0]+name+conn_type[1]
        weightMatrix = get_matrix_from_file(weight_path + "../random/" + connName + ending + ".npy")
        connections[connName] = b.Connection(neuron_groups[connName[0:2]], neuron_groups[connName[2:4]], structure= conn_structure, 
                                                    state = "g"+conn_type[0])
        connections[connName].connect(neuron_groups[connName[0:2]], neuron_groups[connName[2:4]], weightMatrix)

    if ee_STDP_on:
        if "ee" in recurrent_conn_names:
            stdp_methods[name+"e"+name+"e"] = b.STDP(connections[name+"e"+name+"e"], eqs=eqs_stdp_ee, pre = eqs_stdp_pre_ee, 
                                                           post = eqs_stdp_post_ee, wmin=0., wmax= wmax_ee)
201528014227051 commented 2 years ago

I have tried to solve the first problem. Welcome to join the work below: https://github.com/201528014227051/brian-stdp-mnist