pietrocarbo / deep-transfer

PyTorch implementation of "Universal Style Transfer via Feature Trasforms"
Apache License 2.0
87 stars 19 forks source link

Can't find the result picture. #6

Open IsabelTseng opened 5 years ago

IsabelTseng commented 5 years ago

I used the following command: python main.py --content inputs/contents/face.jpg --style inputs/styles/tiger.jpg --outDir out/ but cannot find a result picture. Did I do something wrong? Thanks if anyone replied!

Here's the message when I run the command: 2019-08-10 15:18:58,485 - [INFO] - log_utils:main.py:120 - Utilizing the first CUDA gpu available 2019-08-10 15:18:58,485 - [INFO] - log_utils:main.py:132 - Creating content and style pairs dataset object 2019-08-10 15:18:58,485 - [INFO] - log_utils:main.py:140 - Using multi-level stylization pipeline 2019-08-10 15:19:00,379 - [INFO] - log_utils:main.py:146 - Starting 0/1 stylization iteration 2019-08-10 15:19:00,379 - [INFO] - log_utils:main.py:170 - content: ['inputs/contents/face.jpg'] style: ['inputs/styles/tiger.jpg'] 2019-08-10 15:19:00,382 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:15 - Stylization up to ReLu0 of content sized: torch.Size([1, 3, 420, 420]) and style sized: torch.Size([1, 3, 1024, 1024]) 2019-08-10 15:19:00,524 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:59 - transfer-mode: content features size: torch.Size([512, 27, 27]), style features size: torch.Size([512, 64, 64]) /home/anaconda3/envs/deeptransfer/lib/python3.6/site-packages/torch/nn/modules/upsampling.py:177: UserWarning: nn.UpsamplingNearest2d is deprecated. Use nn.functional.interpolate instead. warnings.warn("nn.UpsamplingNearest2d is deprecated. Use nn.functional.interpolate instead.") /home/anaconda3/envs/deeptransfer/lib/python3.6/site-packages/torch/nn/modules/upsampling.py:122: UserWarning: nn.Upsampling is deprecated. Use nn.functional.interpolate instead. warnings.warn("nn.Upsampling is deprecated. Use nn.functional.interpolate instead.") 2019-08-10 15:19:00,685 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:15 - Stylization up to ReLu1 of content sized: torch.Size([1, 3, 432, 432]) and style sized: torch.Size([1, 3, 1024, 1024]) 2019-08-10 15:19:00,813 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:59 - transfer-mode: content features size: torch.Size([512, 54, 54]), style features size: torch.Size([512, 128, 128]) 2019-08-10 15:19:01,026 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:15 - Stylization up to ReLu2 of content sized: torch.Size([1, 3, 432, 432]) and style sized: torch.Size([1, 3, 1024, 1024]) 2019-08-10 15:19:01,114 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:59 - transfer-mode: content features size: torch.Size([256, 108, 108]), style features size: torch.Size([256, 256, 256]) 2019-08-10 15:19:01,292 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:15 - Stylization up to ReLu3 of content sized: torch.Size([1, 3, 432, 432]) and style sized: torch.Size([1, 3, 1024, 1024]) 2019-08-10 15:19:01,388 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:59 - transfer-mode: content features size: torch.Size([128, 216, 216]), style features size: torch.Size([128, 512, 512]) 2019-08-10 15:19:01,642 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:15 - Stylization up to ReLu4 of content sized: torch.Size([1, 3, 432, 432]) and style sized: torch.Size([1, 3, 1024, 1024]) 2019-08-10 15:19:01,751 - [DEBUG] - log_utils:/home/Desktop/test/deep-transfer/autoencoder.py:59 - transfer-mode: content features size: torch.Size([64, 432, 432]), style features size: torch.Size([64, 1024, 1024]) 2019-08-10 15:19:02,237 - [INFO] - log_utils:main.py:190 - Wall-clock time took for stylization: 1.8556714369915426s 2019-08-10 15:19:02,237 - [INFO] - log_utils:main.py:193 - Stylization completed, exiting.

Yanteng32 commented 4 years ago

how u solve this question, same question with u。。。 thanks

moonmoonCL commented 3 years ago

The function save_image is commented out in main.py, uncomment that.