Open AaronYKing opened 6 years ago
Looks like the upper left corner of the bbox is actually the center. Move the box coordinates by -w/2 and -h/2.
On Tue, Aug 14, 2018 at 8:40 AM AaronYKing notifications@github.com wrote:
I test the model of yolov3 with python interface of darknet.py. But the results of bboxes have a coordinate offsets. The result picture link is here https://github.com/AaronYKing/BUG/blob/master/result_dog.jpg. The code is as follow:
from ctypes import * import math import random import cv2
def sample(probs): s = sum(probs) probs = [a/s for a in probs] r = random.uniform(0, 1) for i in range(len(probs)): r = r - probs[i] if r <= 0: return i return len(probs)-1
def c_array(ctype, values): arr = (ctype*len(values))() arr[:] = values return arr
class BOX(Structure): fields = [("x", c_float), ("y", c_float), ("w", c_float), ("h", c_float)]
class DETECTION(Structure): fields = [("bbox", BOX), ("classes", c_int), ("prob", POINTER(c_float)), ("mask", POINTER(c_float)), ("objectness", c_float), ("sort_class", c_int)]
class IMAGE(Structure): fields = [("w", c_int), ("h", c_int), ("c", c_int), ("data", POINTER(c_float))]
class METADATA(Structure): fields = [("classes", c_int), ("names", POINTER(c_char_p))]
lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
lib = CDLL("libdarknet.so", RTLD_GLOBAL) lib.network_width.argtypes = [c_void_p] lib.network_width.restype = c_int lib.network_height.argtypes = [c_void_p] lib.network_height.restype = c_int
predict = lib.network_predict predict.argtypes = [c_void_p, POINTER(c_float)] predict.restype = POINTER(c_float)
set_gpu = lib.cuda_set_device set_gpu.argtypes = [c_int]
make_image = lib.make_image make_image.argtypes = [c_int, c_int, c_int] make_image.restype = IMAGE
get_network_boxes = lib.get_network_boxes get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)] get_network_boxes.restype = POINTER(DETECTION)
make_network_boxes = lib.make_network_boxes make_network_boxes.argtypes = [c_void_p] make_network_boxes.restype = POINTER(DETECTION)
free_detections = lib.free_detections free_detections.argtypes = [POINTER(DETECTION), c_int]
free_ptrs = lib.free_ptrs free_ptrs.argtypes = [POINTER(c_void_p), c_int]
network_predict = lib.network_predict network_predict.argtypes = [c_void_p, POINTER(c_float)]
reset_rnn = lib.reset_rnn reset_rnn.argtypes = [c_void_p]
load_net = lib.load_network load_net.argtypes = [c_char_p, c_char_p, c_int] load_net.restype = c_void_p
do_nms_obj = lib.do_nms_obj do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort = lib.do_nms_sort do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
free_image = lib.free_image free_image.argtypes = [IMAGE]
letterbox_image = lib.letterbox_image letterbox_image.argtypes = [IMAGE, c_int, c_int] letterbox_image.restype = IMAGE
load_meta = lib.get_metadata lib.get_metadata.argtypes = [c_char_p] lib.get_metadata.restype = METADATA
load_image = lib.load_image_color load_image.argtypes = [c_char_p, c_int, c_int] load_image.restype = IMAGE
rgbgr_image = lib.rgbgr_image rgbgr_image.argtypes = [IMAGE]
predict_image = lib.network_predict_image predict_image.argtypes = [c_void_p, IMAGE] predict_image.restype = POINTER(c_float)
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45): im = load_image(image, 0, 0) num = c_int(0) pnum = pointer(num) predict_image(net, im) dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum) num = pnum[0] if (nms): do_nms_obj(dets, num, meta.classes, nms);
res = [] for j in range(num): for i in range(meta.classes): if dets[j].prob[i] > 0: b = dets[j].bbox res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) print 'libdarknet.so:',b.x, b.y, b.w, b.h res = sorted(res, key=lambda x: -x[1]) free_image(im) free_detections(dets, num) return res
if name == "main": net = load_net("cfg/yolov3.cfg", "yolov3.weights", 0) meta = load_meta("cfg/coco.data") r = detect(net, meta, "data/dog.jpg") print r
image = cv2.imread('data/dog.jpg') print image.shape n = 0 for i in range(len(r)): n+=1 cv2.rectangle(image, (int(r[i][2][0]), int(r[i][2][1])), (int(r[i][2][0]+r[i][2][2]), int(r[i][2][1]+r[i][2][3])), (0,255,0), 2) print 'dets num:', n cv2.imwrite('result_dog.jpg', image) cv2.imshow('result_dog', image) cv2.waitKey(0)
What's the problem about it?
Any help will be grateful!
— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub https://github.com/pjreddie/darknet/issues/1055, or mute the thread https://github.com/notifications/unsubscribe-auth/ARocJafbS-2C_vmjLdikBeuyZvmAYA7zks5uQu9WgaJpZM4V8rvC .
-- Peter Quinn (415) 794-2264 (cell)
Yes. Thx @PeterQuinn925
change res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) to res.append((meta.names[i], dets[j].prob[i], (b.x - b.w / 2, b.y - b.h /2, b.w, b.h)))
I test the model of yolov3 with python interface of
darknet.py
. But the results of bboxes have a coordinate offsets. The result picture link is here. The code is as follow:What's the problem about it?
Any help will be grateful!