pmkalshetti / fast_point_cloud_sampling

Fast point cloud sampling using graph signal processing.
25 stars 5 forks source link

Incompatible function #4

Open JudgeLJX opened 10 months ago

JudgeLJX commented 10 months ago

Hi, I met this issue:

Could you please help a lot

Read 300 points Traceback (most recent call last): File "sample_point_cloud.py", line 18, in pcd_sampled = sample_pcd(pcd_orig, args.filter_type, args.n_samples, 10, 10) File "/home/judgel/Desktop/fast_point_cloud_sampling-master/utils.py", line 49, in sample_pcd scores = compute_scores_from_points(points_orig, filter_type, scale_min_dist, scale_max_dist) File "/home/judgel/Desktop/fast_point_cloud_sampling-master/utils.py", line 32, in compute_scores_from_points scores = graph_filter.compute_scores(points, filter_type, scale_min_dist, scale_max_dist) TypeError: compute_scores(): incompatible function arguments. The following argument types are supported:

  1. (arg0: Eigen::Matrix<double, -1, -1, 0, -1, -1>, arg1: str, arg2: int, arg3: int) -> Eigen::Matrix<double, -1, 1, 0, -1, 1>

Invoked with: array([[-1.93484843e-01, -4.95167285e-01, -2.63983041e-01], [-2.17938349e-01, -4.91037607e-01, -2.82596081e-01], [ 2.00165346e-01, -4.95085597e-01, -2.63629794e-01], [ 2.04199612e-01, -4.80470300e-01, -2.85623878e-01],

fsr-cell commented 5 months ago

Hello, have you solved this problem? I also encountered a similar problem

fsr-cell commented 5 months ago

Hello, I have resolved this issue. Here are the steps to resolve it:

  1. Add # include "pybind11/numpy. h" to graph_filter. h

  2. Modify the following code:

    py::array_t<double> compute_scores(py::array_t<double> points, const std::string filter_type, const int scale_min_dist, const int scale_max_dist)
    // VectorXd compute_scores(const MatrixXd &points, const std::string filter_type)
    {   
    
    py::buffer_info buf = points.request();
    double *ptr = static_cast<double *>(buf.ptr);
    int rows = buf.shape[0];
    int cols = buf.shape[1];
    
    Eigen::MatrixXd points_mat = Eigen::Map<Eigen::MatrixXd>(ptr, rows, cols);
    
    const int n_points = points_mat.rows();
    
    kdree_t kdtree(points_mat.transpose()); // requires rows = dimension
    
    double min_dist{0.0};
    double max_dist{0.0};
    compute_resolution(points_mat, kdtree, min_dist, max_dist);
    
    // const double radius = std::min(min_dist * 10, max_dist * 2);
    const double radius = std::min(min_dist * scale_min_dist, max_dist * scale_max_dist);
    std::cout << "\nResolution: " << min_dist << ", " << max_dist << ", " << radius << "\n";
    // const double radius = std::min(min_dist, max_dist);
    const int max_neighbors = 100;
    
    // adjacency matrix W
    SparseMatrix<double> W = compute_adjacency_matrix(points_mat, kdtree, radius, max_neighbors);
    
    // // compute D
    // SparseMatrix<double> D(n_points, n_points);
    // D.reserve(n_points); // diagonal
    // for (int i = 0; i < W.outerSize(); ++i)
    // {
    //     double row_sum{0.0};
    //     for (SparseMatrix<double>::InnerIterator it(W, i); it; ++it)
    //     {
    //         row_sum += it.value();
    //     }
    //     D.coeffRef(i, i) = row_sum;
    // }
    
    // // compute L
    // SparseMatrix<double> L(n_points, n_points);
    // L = D - W;
    
    SparseMatrix<double> F(n_points, n_points);
    if (filter_type == "all")
    {
        F.setIdentity();
        std::cout << "Matrix F:\n" << F << std::endl;
    }
    else if (filter_type == "high")
    {
        // F = D - W
        SparseMatrix<double> D = compute_D(W);
        F = D - W;
        std::cout << "Matrix F:\n" << F << std::endl;
    
    }
    else if (filter_type == "low")
    {
        // F = D^-1 * W
        F = W;
        SparseMatrix<double> D = compute_D(W);
        for (int i = 0; i < F.outerSize(); ++i)
        {
            double row_sum{0.0};
            for (SparseMatrix<double>::InnerIterator it(F, i); it; ++it)
            {
                it.valueRef() *= D.coeff(i, i) + 1; 
            }
        }
    
        std::cout << "Matrix F:\n" << F << std::endl;
    }
    else
    {
        std::cout << "ERROR! filter type has to be among {high, low, all}\n";
        std::exit(-1);   
    }
    
    // apply filter
    VectorXd scores = apply_filter(points_mat, F);
    
    std::cout << "Scores: " << scores.transpose() << std::endl;
    
    const double *data_ptr = scores.data();
    
    // 创建一个新的 NumPy 数组,并复制数据
    py::array_t<double> np_array(scores.size());
    auto buffer_info = np_array.request();
    double *numpy_data_ptr = static_cast<double *>(buffer_info.ptr);
    std::memcpy(numpy_data_ptr, data_ptr, scores.size() * sizeof(double));
    
    py::print(np_array);
    
    return np_array;
    // return scores;
    }
  3. Comment the code of sample_points and sample_data(Sorry, my English is not very good, the meaning of comment is equivalent to deletion)

JudgeLJX commented 1 month ago

Hi Thanks for your reply,

Can you get the same result shows in its cube figure?