Notes on porting from the old PUMI version to the new one:
I will use the terms „NP“ for „new PUMI“ and „OP“ for „old PUMI“.
Use NP NestedNodes and NestedWorkflow instead of nipype nodes and workflows
You only have to change the nipype-node-import to from PUMI.engine import NestedNode as Node and the nipype-workflow-import to from PUMI.engine import NestedWorkflow as Workflow
Every workflow of NP must use a (suitable) decorator.
Anatomical related workflows use „AnatPipeline“, functional ones „FuncPipelines“ and QC-Workflows use „QcPipeline“
You have to specify the inputspec_fields and the outputspec_fields when using the decorator
It‘s possible to specify your own DataSinker regex-substitutions with regexp_sub=[]
You can deactivate the default regex substitutions with default_regexp_sub=False (not advised if you don‘t really know what you do)
Don‘t use MapNodes. Most times it‘s enough to change MapNode to Node and delete the iterfields but verify that this makes sense when doing it!
You may stumble across such connection statements in OP (note the „outputspec.[...]“ and „inputspec.[...]“): wf_mc.connect(mytmpfilt, 'outputspec.func_tmplfilt', fmri_qc_mc_dspk_nuis_bpf, 'inputspec.func').Don‘t explicitly mention inputspec/outputspec in NP when connecting nested workflows. The NP equivalent would be: wf_mc.connect(mytmpfilt, 'func_tmplfilt', fmri_qc_mc_dspk_nuis_bpf, 'func').
Notes on porting from the old PUMI version to the new one: I will use the terms „NP“ for „new PUMI“ and „OP“ for „old PUMI“.
Also note the coding conventions mentioned in NP README (https://github.com/pni-lab/PUMI)