Fetching data from slot data from assay Spatial.008um
Subsetting by features
Calculating gene variances
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**|
Calculating feature variances of standardized and clipped values
0% 10 20 30 40 50 60 70 80 90 100%
[----|----|----|----|----|----|----|----|----|----|
**|
Error in order(hvf.info$vst.variance.standardized, decreasing = TRUE) :
argument 1 is not a vector
In addition: Warning messages:
1: In get_data(object, assay, slot, features, verbose) :
No variable features found. Running Seurat::FindVariableFeatures
2: In FindVariableFeatures.Assay(object = object[[assay]], selection.method = selection.method, :
selection.method set to 'vst' but count slot is empty; will use data slot instead
The rest of the code runs okay until I get to the SpatialDimPlot()portion
Scale for fill is already present.
Adding another scale for fill, which will replace the existing scale.
Error in order(labels.loc[, id]) : argument 1 is not a vector
Here is my sessionInfo()sessionInfo()
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)
Fetching data from slot data from assay Spatial.008um
Subsetting by features
Computing neighbors...
Spatial mode is kNN_median
Parameters: k_geom=20
Done
Computing harmonic m = 0
Using 20 neighbors
Processed 393543 groups out of 393543. 100% done. Time elapsed: 399s. ETA: 0s..
Done
Creating Banksy matrix
Scaling BANKSY matrix. Do not call ScaleData on assay BANKSY
Setting default assay to BANKSY
Warning: Layer counts isn't present in the assay object; returning NULL
Warning message:
In asMethod(object) :
sparse->dense coercion: allocating vector of size 5.9 GiB
Scale for fill is already present.
Adding another scale for fill, which will replace the existing scale.
Error in order(labels.loc[, id]) : argument 1 is not a vector
sessionInfo()
R version 4.4.1 (2024-06-14 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 22631)
Hi, I am running through the Seurat tutorial Pipeline and having trouble with just the first part of the Banksy code and getting the following error while using the training data suggested:
The rest of the code runs okay until I get to the
SpatialDimPlot()
portionHere is my sessionInfo()
sessionInfo()
R version 4.4.1 (2024-06-14 ucrt) Platform: x86_64-w64-mingw32/x64 Running under: Windows 11 x64 (build 22631)
Matrix products: default
locale: [1] LC_COLLATE=English_United States.utf8 LC_CTYPE=English_United States.utf8 LC_MONETARY=English_United States.utf8 [4] LC_NUMERIC=C LC_TIME=English_United States.utf8
time zone: America/New_York tzcode source: internal
attached base packages: [1] stats graphics grDevices utils datasets methods base
other attached packages: [1] Banksy_1.0.0 SeuratWrappers_0.3.5 presto_1.0.0 data.table_1.16.0 Rcpp_1.0.13
[6] dplyr_1.1.4 patchwork_1.3.0 ggplot2_3.5.1 Seurat_5.1.0 SeuratObject_5.0.2
[11] sp_2.1-4
loaded via a namespace (and not attached): [1] RcppHungarian_0.3 RcppAnnoy_0.0.22 splines_4.4.1 later_1.3.2
[5] tibble_3.2.1 R.oo_1.26.0 polyclip_1.10-7 fastDummies_1.7.4
[9] lifecycle_1.0.4 aricode_1.0.3 globals_0.16.3 processx_3.8.4
[13] lattice_0.22-6 hdf5r_1.3.11 MASS_7.3-60.2 magrittr_2.0.3
[17] plotly_4.10.4 remotes_2.5.0 httpuv_1.6.15 sctransform_0.4.1
[21] spam_2.11-0 sessioninfo_1.2.2 pkgbuild_1.4.4 spatstat.sparse_3.1-0
[25] reticulate_1.39.0 cowplot_1.1.3 pbapply_1.7-2 RColorBrewer_1.1-3
[29] zlibbioc_1.50.0 abind_1.4-8 pkgload_1.4.0 GenomicRanges_1.56.1
[33] Rtsne_0.17 purrr_1.0.2 R.utils_2.12.3 BiocGenerics_0.50.0
[37] GenomeInfoDbData_1.2.12 IRanges_2.38.1 S4Vectors_0.42.1 ggrepel_0.9.6
[41] irlba_2.3.5.1 listenv_0.9.1 spatstat.utils_3.1-0 goftest_1.2-3
[45] RSpectra_0.16-2 spatstat.random_3.3-2 fitdistrplus_1.2-1 parallelly_1.38.0
[49] DelayedArray_0.30.1 leiden_0.4.3.1 codetools_0.2-20 tidyselect_1.2.1
[53] UCSC.utils_1.0.0 farver_2.1.2 matrixStats_1.4.1 stats4_4.4.1
[57] spatstat.explore_3.3-2 jsonlite_1.8.9 ellipsis_0.3.2 progressr_0.14.0
[61] ggridges_0.5.6 survival_3.6-4 dbscan_1.2-0 tools_4.4.1
[65] ica_1.0-3 glue_1.8.0 SparseArray_1.4.8 gridExtra_2.3
[69] MatrixGenerics_1.16.0 usethis_3.0.0 GenomeInfoDb_1.40.1 withr_3.0.1
[73] BiocManager_1.30.25 fastmap_1.2.0 fansi_1.0.6 callr_3.7.6
[77] digest_0.6.37 rsvd_1.0.5 R6_2.5.1 mime_0.12
[81] colorspace_2.1-1 scattermore_1.2 sccore_1.0.5 tensor_1.5
[85] spatstat.data_3.1-2 R.methodsS3_1.8.2 utf8_1.2.4 tidyr_1.3.1
[89] generics_0.1.3 S4Arrays_1.4.1 httr_1.4.7 htmlwidgets_1.6.4
[93] uwot_0.2.2 pkgconfig_2.0.3 gtable_0.3.5 lmtest_0.9-40
[97] XVector_0.44.0 SingleCellExperiment_1.26.0 htmltools_0.5.8.1 profvis_0.4.0
[101] dotCall64_1.2 Biobase_2.64.0 scales_1.3.0 png_0.1-8
[105] SpatialExperiment_1.14.0 spatstat.univar_3.0-1 rstudioapi_0.16.0 rjson_0.2.23
[109] reshape2_1.4.4 nlme_3.1-164 curl_5.2.3 cachem_1.1.0
[113] zoo_1.8-12 stringr_1.5.1 KernSmooth_2.23-24 parallel_4.4.1
[117] miniUI_0.1.1.1 arrow_17.0.0.1 desc_1.4.3 pillar_1.9.0
[121] grid_4.4.1 vctrs_0.6.5 RANN_2.6.2 urlchecker_1.0.1
[125] promises_1.3.0 xtable_1.8-4 cluster_2.1.6 magick_2.8.5
[129] cli_3.6.3 compiler_4.4.1 crayon_1.5.3 rlang_1.1.4
[133] future.apply_1.11.2 labeling_0.4.3 mclust_6.1.1 ps_1.8.0
[137] plyr_1.8.9 fs_1.6.4 stringi_1.8.4 viridisLite_0.4.2
[141] deldir_2.0-4 assertthat_0.2.1 munsell_0.5.1 lazyeval_0.2.2
[145] devtools_2.4.5 spatstat.geom_3.3-3 Matrix_1.7-0 RcppHNSW_0.6.0
[149] bit64_4.5.2 future_1.34.0 shiny_1.9.1 SummarizedExperiment_1.34.0 [153] ROCR_1.0-11 leidenAlg_1.1.3 igraph_2.0.3 memoise_2.0.1
[157] bit_4.5.0 ape_5.8
I ran it a second time and got the following