prathimacode-hub / ML-ProjectKart

🙌Kart of 232+ projects based on machine learning, deep learning, computer vision, natural language processing and all. Show your support by ✨ this repository.
https://prathimacode-hub.github.io/ML-ProjectKart/
Mozilla Public License 2.0
532 stars 234 forks source link

Brazil Fires Prediction #479

Closed aryantiwari10 closed 3 years ago

aryantiwari10 commented 3 years ago

Define You:

PROJECT TITLE : Brazil Fires Prediction plz assign this project to me.

GOAL : To predict the number of the fires taken place statewise in brazil.

DATASET : https://www.kaggle.com/gustavomodelli/forest-fires-in-brazil

WHAT I HAD DONE : In this project first I performed a exploratory data analysis on the Brazil Fires dataset which includes of data cleaning , data manipulation, data preprocessing , data visualization and after that I did the model building using different machine learning classification and regression algorithms and then predicted the accuracy of every model . In the model prediction part I used different machine learning algorithms . In each algorithm I had included the accuracy score , training score , classification report , confusion matrix . While in the EDA part I have included different plots for the different visualizations of our dataset . During the model prediction I got different accuracies from different models , I got the highest accuracy of 100 % using the Random Forest Classifier, XG Boost Classifier which is quite well for the given Brazil Fires dataset . While the other model accuracies can be increased more using the hypertuning . Some plots which I used for visualizing the dataset are Histogram , Barplot , Boxplot, Heatmap , Scatter plot , Pairplot , Jointplot etc.

LIBRARIES:

PANDAS

NUMPY

MATPLOTLIB

SEABORN

SCIPY

SKLEARN

CONCLUSION :

So we get a good accuracy and training score of about 100 % using Random Forest Classifier, XG Boost , Gradient Boosting Classifier.

The accuracy of other models can be increased by Hypertuning.

prathimacode-hub commented 3 years ago

Issue assigned. @aryantiwari10