prathimacode-hub / ML-ProjectKart

🙌Kart of 232+ projects based on machine learning, deep learning, computer vision, natural language processing and all. Show your support by ✨ this repository.
https://prathimacode-hub.github.io/ML-ProjectKart/
Mozilla Public License 2.0
536 stars 235 forks source link

Graduate Admission Prediction #494

Closed aryantiwari10 closed 3 years ago

aryantiwari10 commented 3 years ago

Define You:

PROJECT TITLE : Graduate Admission Prediction

GOAL : To predict about the Graduate Admissions from an Indian perspective.

DATASET : https://www.kaggle.com/mohansacharya/graduate-admissions

WHAT I HAD DONE : In this project first I performed a exploratory data analysis on the Graduate Admission dataset which includes of data cleaning , data manipulation, data preprocessing , data visualization and after that I did the model building using different machine learning regression algorithms and then predicted the accuracy of every model . In the model prediction part I used different machine learning algorithms . In each algorithm I had included the accuracy score , training score , R2 score, mean squared error as it is a regression problem . While in the EDA part I have included different plots for the different visualizations of our dataset . During the model prediction I got different accuracies from different models , I got the highest accuracy of 85 % using the Linear Regression which is quite well for the given Supermarket dataset . While the other model accuracies can be increased more using the hypertuning . Some plots which I used for visualizing the dataset are Histogram , Barplot , Boxplot, Heatmap , Scatter plot , Pairplot , Jointplot etc.

LIBRARIES:

PANDAS

NUMPY

MATPLOTLIB

SEABORN

SCIPY

SKLEARN

CONCLUSION : We got a accuracy of about 85 % using Linear Regression and 81 % using Ridge Regression.

The accuracy of other models can be increased by HyperTuning.

prathimacode-hub commented 3 years ago

Issue assigned. @aryantiwari10