function obj = setupSystemObjects()
% Initialize Video I/O
% Create objects for reading a video from a file, drawing the tracked
% objects in each frame, and playing the video.
% create a video file reader
obj.reader = vision.VideoFileReader('a.avi');
% create two video players, one to display the video,
% and one to display the foreground mask
obj.videoPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]);
obj.maskPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]);
% Create system objects for foreground detection and blob analysis
% The foreground detector is used to segment moving objects from
% the background. It outputs a binary mask, where the pixel value
% of 1 corresponds to the foreground and the value of 0 corresponds
% to the background.
obj.detector = vision.ForegroundDetector('NumGaussians', 3, ...
'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7);
% Connected groups of foreground pixels are likely to correspond to moving
% objects. The blob analysis system object is used to find such groups
% (called 'blobs' or 'connected components'), and compute their
% characteristics, such as area, centroid, and the bounding box.
obj.blobAnalyser = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
'AreaOutputPort', true, 'CentroidOutputPort', true, ...
'MinimumBlobArea', 400);
end
function tracks = initializeTracks()
% create an empty array of tracks
tracks = struct(...
'id', {}, ...
'bbox', {}, ...
'kalmanFilter', {}, ...
'age', {}, ...
'totalVisibleCount', {}, ...
'consecutiveInvisibleCount', {});
end
function frame = readFrame()
frame = obj.reader.step();
end
function [centroids, bboxes, mask] = detectObjects(frame)
% detect foreground
mask = obj.detector.step(frame);
% apply morphological operations to remove noise and fill in holes
mask = imopen(mask, strel('rectangle', [3,3]));
mask = imclose(mask, strel('rectangle', [15, 15]));
mask = imfill(mask, 'holes');
% perform blob analysis to find connected components
[~, centroids, bboxes] = obj.blobAnalyser.step(mask);
end
function predictNewLocationsOfTracks()
for i = 1:length(tracks)
bbox = tracks(i).bbox;
% predict the current location of the track
predictedCentroid = predict(tracks(i).kalmanFilter);
% shift the bounding box so that its center is at
% the predicted location
predictedCentroid = int32(predictedCentroid) - bbox(3:4) / 2;
tracks(i).bbox = [predictedCentroid, bbox(3:4)];
end
end
function [assignments, unassignedTracks, unassignedDetections] = ...
detectionToTrackAssignment()
nTracks = length(tracks);
nDetections = size(centroids, 1);
% compute the cost of assigning each detection to each track
cost = zeros(nTracks, nDetections);
for i = 1:nTracks
cost(i, :) = distance(tracks(i).kalmanFilter, centroids);
end
% solve the assignment problem
costOfNonAssignment = 20;
[assignments, unassignedTracks, unassignedDetections] = ...
assignDetectionsToTracks(cost, costOfNonAssignment);
end
function updateAssignedTracks()
numAssignedTracks = size(assignments, 1);
for i = 1:numAssignedTracks
trackIdx = assignments(i, 1);
detectionIdx = assignments(i, 2);
centroid = centroids(detectionIdx, :);
bbox = bboxes(detectionIdx, :);
% correct the estimate of the object's location
% using the new detection
correct(tracks(trackIdx).kalmanFilter, centroid);
% replace predicted bounding box with detected
% bounding box
tracks(trackIdx).bbox = bbox;
% update track's age
tracks(trackIdx).age = tracks(trackIdx).age + 1;
% update visibility
tracks(trackIdx).totalVisibleCount = ...
tracks(trackIdx).totalVisibleCount + 1;
tracks(trackIdx).consecutiveInvisibleCount = 0;
end
end
function updateUnassignedTracks()
for i = 1:length(unassignedTracks)
ind = unassignedTracks(i);
tracks(ind).age = tracks(ind).age + 1;
tracks(ind).consecutiveInvisibleCount = ...
tracks(ind).consecutiveInvisibleCount + 1;
end
end
function deleteLostTracks()
if isempty(tracks)
return;
end
invisibleForTooLong = 10;
ageThreshold = 8;
% compute the fraction of the track's age for which it was visible
ages = [tracks(:).age];
totalVisibleCounts = [tracks(:).totalVisibleCount];
visibility = totalVisibleCounts ./ ages;
% find the indices of 'lost' tracks
lostInds = (ages < ageThreshold & visibility < 0.6) | ...
[tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong;
% delete lost tracks
tracks = tracks(~lostInds);
end
function createNewTracks()
centroids = centroids(unassignedDetections, :);
bboxes = bboxes(unassignedDetections, :);
for i = 1:size(centroids, 1)
centroid = centroids(i,:);
bbox = bboxes(i, :);
% create a Kalman filter object
kalmanFilter = configureKalmanFilter('ConstantVelocity', ...
centroid, [200, 50], [100, 25], 100);
% create a new track
newTrack = struct(...
'id', nextId, ...
'bbox', bbox, ...
'kalmanFilter', kalmanFilter, ...
'age', 1, ...
'totalVisibleCount', 1, ...
'consecutiveInvisibleCount', 0);
% add it to the array of tracks
tracks(end + 1) = newTrack;
% increment the next id
nextId = nextId + 1;
end
end
function displayTrackingResults()
% convert the frame and the mask to uint8 RGB
frame = im2uint8(frame);
mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
minVisibleCount = 8;
if ~isempty(tracks)
% noisy detections tend to result in short-lived tracks
% only display tracks that have been visible for more than
% a minimum number of frames.
reliableTrackInds = ...
[tracks(:).totalVisibleCount] > minVisibleCount;
reliableTracks = tracks(reliableTrackInds);
% display the objects. If an object has not been detected
% in this frame, display its predicted bounding box.
if ~isempty(reliableTracks)
% get bounding boxes
bboxes = cat(1, reliableTracks.bbox);
% get ids
ids = int32([reliableTracks(:).id]);
% create labels for objects indicating the ones for
% which we display the predicted rather than the actual
% location
labels = cellstr(int2str(ids'));
predictedTrackInds = ...
[reliableTracks(:).consecutiveInvisibleCount] > 0;
isPredicted = cell(size(labels));
isPredicted(predictedTrackInds) = {' predicted'};
labels = strcat(labels, isPredicted);
% draw on the frame
frame = insertObjectAnnotation(frame, 'rectangle', ...
bboxes, labels);
% draw on the mask
mask = insertObjectAnnotation(mask, 'rectangle', ...
bboxes, labels);
end
end
% display the mask and the frame
obj.maskPlayer.step(mask);
obj.videoPlayer.step(frame);
function mot3() % create system objects used for reading video, detecting moving objects, % and displaying the results obj = setupSystemObjects();
tracks = initializeTracks(); % create an empty array of tracks
nextId = 1; % ID of the next track
% detect moving objects, and track them across video frames while ~isDone(obj.reader) frame = readFrame(); [centroids, bboxes, mask] = detectObjects(frame); predictNewLocationsOfTracks(); [assignments, unassignedTracks, unassignedDetections] = ... detectionToTrackAssignment();
end
function obj = setupSystemObjects() % Initialize Video I/O % Create objects for reading a video from a file, drawing the tracked % objects in each frame, and playing the video.
end
function tracks = initializeTracks() % create an empty array of tracks tracks = struct(... 'id', {}, ... 'bbox', {}, ... 'kalmanFilter', {}, ... 'age', {}, ... 'totalVisibleCount', {}, ... 'consecutiveInvisibleCount', {}); end
function frame = readFrame() frame = obj.reader.step(); end
function [centroids, bboxes, mask] = detectObjects(frame)
end
function predictNewLocationsOfTracks() for i = 1:length(tracks) bbox = tracks(i).bbox;
end
function [assignments, unassignedTracks, unassignedDetections] = ... detectionToTrackAssignment()
end
function updateAssignedTracks() numAssignedTracks = size(assignments, 1); for i = 1:numAssignedTracks trackIdx = assignments(i, 1); detectionIdx = assignments(i, 2); centroid = centroids(detectionIdx, :); bbox = bboxes(detectionIdx, :);
end
function updateUnassignedTracks() for i = 1:length(unassignedTracks) ind = unassignedTracks(i); tracks(ind).age = tracks(ind).age + 1; tracks(ind).consecutiveInvisibleCount = ... tracks(ind).consecutiveInvisibleCount + 1; end end
function deleteLostTracks() if isempty(tracks) return; end
end
function createNewTracks() centroids = centroids(unassignedDetections, :); bboxes = bboxes(unassignedDetections, :);
end
function displayTrackingResults() % convert the frame and the mask to uint8 RGB frame = im2uint8(frame); mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
end end % help me with these code