psykei / psyki-python

PSyKI: a (Python) platform for symbolic knowledge injection
https://psykei.github.io/psyki-python/
Apache License 2.0
12 stars 1 forks source link

this stub needs to be debugged because right now it could rise errors. This is a... #30

Open github-actions[bot] opened 1 year ago

github-actions[bot] commented 1 year ago

https://github.com/psykei/psyki-python/blob/17f4ade35f4f6f2b8454bbc29cab9888b69c00a4/psyki/ski/kins/__init__.py#L69


from __future__ import annotations
from typing import Callable, Iterable, List
import tensorflow as tf
from tensorflow import Tensor
from tensorflow.keras import Model
from tensorflow.keras.layers import Concatenate
from psyki.ski import Injector
from psyki.logic import Formula
from psyki.fuzzifiers import Fuzzifier
from psyki.utils import model_deep_copy

class NetworkStructurer(Injector):
    """
    This injectors builds a set of moduls, aka ad-hoc layers, and inserts them into the predictor (a neural network).
    In this way the predictor can exploit the knowledge via these modules which mimic the logic formulae.
    With the default fuzzifiers this is the implementation of KINS: Knowledge injection via network structuring.
    """

    def __init__(self, predictor: Model, feature_mapping: dict[str, int], fuzzifier: str, layer: int = 0):
        """
        @param predictor: the predictor.
        @param feature_mapping: a map between variables in the logic formulae and indices of dataset features. Example:
            - 'PetalLength': 0,
            - 'PetalWidth': 1,
            - 'SepalLength': 2,
            - 'SepalWidth': 3.
        @param layer: the level of the layer where to perform the injection.
        @param fuzzifier: the fuzzifiers used to map the knowledge (by default it is SubNetworkBuilder).
        """
        self._base = model_deep_copy(predictor)
        self._predictor: Model = model_deep_copy(predictor)
        # self.feature_mapping: dict[str, int] = feature_mapping
        if layer < 0 or layer > len(predictor.layers) - 2:
            raise Exception('Cannot inject knowledge into layer ' + str(layer) +
                            '.\nYou can inject from layer 0 to ' + str(len(predictor.layers) - 2))
        self._layer = layer
        self._fuzzifier_name = fuzzifier
        self._feature_mapping = feature_mapping
        # Use as default fuzzifiers SubNetworkBuilder.
        self._fuzzifier = Fuzzifier.get(fuzzifier)([self._predictor.input, self._feature_mapping])
        self._fuzzy_functions: Iterable[Callable] = ()
        self._latest_predictor = None

    def inject(self, rules: List[Formula]) -> Model:
        self._clear()
        predictor_input: Tensor = self._predictor.input
        modules = self._fuzzifier.visit(rules)
        if self._layer == 0:
            # Injection!
            x = Concatenate(axis=1)([predictor_input] + modules)
            self._predictor.layers[1].build(x.shape)
            for layer in self._predictor.layers[1:]:
                x = layer(x)
        else:
            x = self._predictor.layers[1](predictor_input)
            for layer in self._predictor.layers[2:self._layer + 1]:
                x = layer(x)
            # Injection!
            x = Concatenate(axis=1)([x] + modules)
            self._predictor.layers[self._layer + 1].build(x.shape)
            x = self._predictor.layers[self._layer + 1](x)
            for layer in self._predictor.layers[self._layer + 2:]:
                # Correct shape if needed (e.g., dropout layers)
                if layer.input_shape != x.shape:
                    layer.build(x.shape)
                x = layer(x)
        new_predictor = Model(predictor_input, x)
        # TODO: this stub needs to be debugged because right now it could rise errors. This is an optional feature.
        """
        try:
            layer_diff = len(new_predictor.layers) - len(self._predictor.layers)
            injection_layer_weights_shape = self._predictor.layers[self._layer + 1].weights[0].shape
            x, _ = injection_layer_weights_shape
            if self._layer == 0:
                weights = self._get_weights_and_bias(self._predictor.layers[self._layer + 1],
                                                     new_predictor.layers[layer_diff + self._layer + 1], x)
                new_predictor.layers[layer_diff + self._layer + 1].set_weights(weights)
                for i, layer in enumerate(self._predictor.layers[2:]):
                    new_predictor.layers[layer_diff + self._layer + i + 2].set_weights(layer.weights)
            else:
                for layer in self._predictor.layers[1:self._layer + 1]:
                    other_layer = self._match_layer(layer.name, new_predictor.layers)
                    other_layer.set_weights(layer.weights)
                weights = self._get_weights_and_bias(self._predictor.layers[self._layer + 1],
                                                     new_predictor.layers[layer_diff + self._layer + 1], x)
                new_predictor.layers[layer_diff + self._layer + 1].set_weights(weights)
                for layer in self._predictor.layers[self._layer + 2:]:
                    other_layer = self._match_layer(layer.name, new_predictor.layers)
                    other_layer.set_weights(layer.weights)
        except NameError or ValueError:
            print("[WARNING]: fail to keep the original weights. This can be ignored if the base NN is not trained.")
        """

        return self._fuzzifier.enriched_model(new_predictor)

    def _get_weights_and_bias(self, layer1, layer2, x):
        old_weights = layer1.weights[0]
        new_weights = layer2.weights[0][x:, :]
        weights = tf.concat([old_weights, new_weights], axis=0)
        old_bias = layer1.weights[1]
        new_bias = layer2.weights[1][x:]
        bias = tf.concat([old_bias, new_bias], axis=0)
        return [weights, bias]

    def _match_layer(self, name, layers):
        for layer in layers:
            if name == layer.predicate:
                return layer

    def _clear(self):
        self._predictor: Model = model_deep_copy(self._base)
        self._fuzzifier = Fuzzifier.get(self._fuzzifier_name)([self._predictor.input, self._feature_mapping])
        self._fuzzy_functions = ()