I'm trying to retrain the model according to the instructions in the README.md file,
python SOURCE/ChromaGAN.py
then this error appears
Traceback (most recent call last):
File "/home/yuuto/Persenal/ChromaGan/ChromaGAN/SOURCE/ChromaGAN.py", line 340, in <module>
colorizationModel.train(train_data,test_data, log)
File "/home/yuuto/Persenal/ChromaGan/ChromaGAN/SOURCE/ChromaGAN.py", line 280, in train
d_loss = self.discriminator_model.train_on_batch([trainL, trainAB, l_3], [positive_y, negative_y, dummy_y])
File "/home/yuuto/anaconda3/envs/Osu/lib/python3.9/site-packages/keras/engine/training.py", line 2093, in train_on_batch
logs = self.train_function(iterator)
File "/home/yuuto/anaconda3/envs/Osu/lib/python3.9/site-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/home/yuuto/anaconda3/envs/Osu/lib/python3.9/site-packages/tensorflow/python/framework/func_graph.py", line 1147, in autograph_handler
raise e.ag_error_metadata.to_exception(e)
TypeError: in user code:
File "/home/yuuto/anaconda3/envs/Osu/lib/python3.9/site-packages/keras/engine/training.py", line 1021, in train_function *
return step_function(self, iterator)
File "/home/yuuto/Persenal/ChromaGan/ChromaGAN/SOURCE/ChromaGAN.py", line 82, in gradient_penalty_loss *
gradients = K.gradients(y_pred, averaged_samples)[0]
File "/home/yuuto/anaconda3/envs/Osu/lib/python3.9/site-packages/keras/backend.py", line 4352, in gradients **
return tf.compat.v1.gradients(
File "/home/yuuto/anaconda3/envs/Osu/lib/python3.9/site-packages/keras/engine/keras_tensor.py", line 254, in __array__
raise TypeError(
TypeError: You are passing KerasTensor(type_spec=TensorSpec(shape=(10, 224, 224, 2), dtype=tf.float32, name=None), name='random_weighted_average/add:0', description="created by layer 'random_weighted_average'"), an intermediate Keras symbolic input/output, to a TF API that does not allow registering custom dispatchers, such as `tf.cond`, `tf.function`, gradient tapes, or `tf.map_fn`. Keras Functional model construction only supports TF API calls that *do* support dispatching, such as `tf.math.add` or `tf.reshape`. Other APIs cannot be called directly on symbolic Kerasinputs/outputs. You can work around this limitation by putting the operation in a custom Keras layer `call` and calling that layer on this symbolic input/output.
What did I do wrong?
I have tried running on different environments and the same phenomenon occurs. using Tensorflow 2.8.0
I'm trying to retrain the model according to the instructions in the README.md file,
then this error appears
What did I do wrong? I have tried running on different environments and the same phenomenon occurs. using Tensorflow 2.8.0