Closed KhalidAmine closed 1 year ago
[X] I have checked that this issue has not already been reported here.
[X] I have confirmed this bug exists on the latest version of pycaret.
[X] I have confirmed this bug exists on the master branch of pycaret (pip install -U git+https://github.com/pycaret/pycaret.git@master).
While setting up pycaret environment with following code
from pycaret.classification import *
exp_class = setup(data = df, target='ETH-USD_up', session_id=123, normalize=True, use_gpu = True, fold_strategy = 'timeseries')
I get the following error, for which after hours of searching I cannot solve. My data consists only of numeric value without any date variable:
596 if log_plots == True: 597 log_plots = ["auc", "confusion_matrix", "feature"]
--> 599 return pycaret.internal.tabular.setup( 600 ml_usecase="classification", 601 available_plots=available_plots, 602 data=data, 603 target=target, 604 train_size=train_size, 605 test_data=test_data, 606 preprocess=preprocess, 607 imputation_type=imputation_type, 608 iterative_imputation_iters=iterative_imputation_iters, 609 categorical_features=categorical_features, 610 categorical_imputation=categorical_imputation, 611 categorical_iterative_imputer=categorical_iterative_imputer, 612 ordinal_features=ordinal_features, 613 high_cardinality_features=high_cardinality_features, 614 high_cardinality_method=high_cardinality_method, ... --> 124 raise IllegalMonthError(month) 125 day1 = weekday(year, month, 1) 126 ndays = mdays[month] + (month == February and isleap(year))
IllegalMonthError: bad month number nan; must be 1-12
/
I expect the setup function to setup the pycaret environment for classification.
--------------------------------------------------------------------------- IllegalMonthError Traceback (most recent call last) Cell In[17], line 2 1 # setting up env pycaret ----> 2 exp_class = setup(data = df, target='ETH-USD_up', session_id=123, normalize=True, use_gpu = True) #, fold_strategy = 'timeseries' File ~/Desktop/dev/Eth_ML_predictor/CryptoML/lib/python3.8/site-packages/pycaret/classification.py:599, in setup(data, target, train_size, test_data, preprocess, imputation_type, iterative_imputation_iters, categorical_features, categorical_imputation, categorical_iterative_imputer, ordinal_features, high_cardinality_features, high_cardinality_method, numeric_features, numeric_imputation, numeric_iterative_imputer, date_features, ignore_features, normalize, normalize_method, transformation, transformation_method, handle_unknown_categorical, unknown_categorical_method, pca, pca_method, pca_components, ignore_low_variance, combine_rare_levels, rare_level_threshold, bin_numeric_features, remove_outliers, outliers_threshold, remove_multicollinearity, multicollinearity_threshold, remove_perfect_collinearity, create_clusters, cluster_iter, polynomial_features, polynomial_degree, trigonometry_features, polynomial_threshold, group_features, group_names, feature_selection, feature_selection_threshold, feature_selection_method, feature_interaction, feature_ratio, interaction_threshold, fix_imbalance, fix_imbalance_method, data_split_shuffle, data_split_stratify, fold_strategy, fold, fold_shuffle, fold_groups, n_jobs, use_gpu, custom_pipeline, html, session_id, log_experiment, experiment_name, experiment_custom_tags, log_plots, log_profile, log_data, silent, verbose, profile, profile_kwargs) 596 if log_plots == True: 597 log_plots = ["auc", "confusion_matrix", "feature"] --> 599 return pycaret.internal.tabular.setup( 600 ml_usecase="classification", 601 available_plots=available_plots, 602 data=data, 603 target=target, 604 train_size=train_size, 605 test_data=test_data, 606 preprocess=preprocess, 607 imputation_type=imputation_type, 608 iterative_imputation_iters=iterative_imputation_iters, 609 categorical_features=categorical_features, 610 categorical_imputation=categorical_imputation, 611 categorical_iterative_imputer=categorical_iterative_imputer, 612 ordinal_features=ordinal_features, 613 high_cardinality_features=high_cardinality_features, 614 high_cardinality_method=high_cardinality_method, ... --> 124 raise IllegalMonthError(month) 125 day1 = weekday(year, month, 1) 126 ndays = mdays[month] + (month == February and isleap(year)) IllegalMonthError: bad month number nan; must be 1-12
Issue was with the input data.
pycaret version checks
[X] I have checked that this issue has not already been reported here.
[X] I have confirmed this bug exists on the latest version of pycaret.
[X] I have confirmed this bug exists on the master branch of pycaret (pip install -U git+https://github.com/pycaret/pycaret.git@master).
Issue Description
While setting up pycaret environment with following code
from pycaret.classification import *
setting up env pycaret
exp_class = setup(data = df, target='ETH-USD_up', session_id=123, normalize=True, use_gpu = True, fold_strategy = 'timeseries')
I get the following error, for which after hours of searching I cannot solve. My data consists only of numeric value without any date variable:
--> 599 return pycaret.internal.tabular.setup( 600 ml_usecase="classification", 601 available_plots=available_plots, 602 data=data, 603 target=target, 604 train_size=train_size, 605 test_data=test_data, 606 preprocess=preprocess, 607 imputation_type=imputation_type, 608 iterative_imputation_iters=iterative_imputation_iters, 609 categorical_features=categorical_features, 610 categorical_imputation=categorical_imputation, 611 categorical_iterative_imputer=categorical_iterative_imputer, 612 ordinal_features=ordinal_features, 613 high_cardinality_features=high_cardinality_features, 614 high_cardinality_method=high_cardinality_method, ... --> 124 raise IllegalMonthError(month) 125 day1 = weekday(year, month, 1) 126 ndays = mdays[month] + (month == February and isleap(year))
IllegalMonthError: bad month number nan; must be 1-12
Reproducible Example
Expected Behavior
I expect the setup function to setup the pycaret environment for classification.
Actual Results
Installed Versions