pyg-team / pytorch_geometric

Graph Neural Network Library for PyTorch
https://pyg.org
MIT License
21.52k stars 3.69k forks source link

MoleculeNet's BBBP dataset incorrectly batched #9311

Closed apurvakokate closed 6 months ago

apurvakokate commented 6 months ago

🐛 Describe the bug

While batching the BBBP dataset, there is one graph that is not associated with any node. This causes a discrepancy in the number of graph labels in the batch and output shape of the downstream model. This affects loss calculations and a shape mismatched is observed.

Minimal code for reproducibility:

` import torch from torch_geometric.loader import DataLoader from torch_geometric.datasets import MoleculeNet

import random

Ensure reproducibility

seed = 42 random.seed(seed) torch.manual_seed(seed)

Load the BBBP dataset

dataset = MoleculeNet(root='.', name='BBBP') loader = DataLoader(dataset, batch_size=64, shuffle=True, drop_last=True) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Check unique graphs in batch match number of graphs in batch

for data in loader: print(data.batch.unique(), data.batch.unique().shape,data.num_graphs) assert data.batch.unique().shape[0] == data.num_graphs`

Expected output:

tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63]) torch.Size([63]) 64 AssertionError

Versions

PyTorch version: 2.2.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A

OS: NVIDIA DGX Server (x86_64) GCC version: (GCC) 5.4.0 Clang version: Could not collect CMake version: version 3.28.3 Libc version: glibc-2.34

Python version: 3.10.4 | packaged by conda-forge | (main, Mar 24 2022, 17:39:04) [GCC 10.3.0] (64-bit runtime) Python platform: Linux-5.14.0-162.23.1.el9_1.x86_64-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA H100 80GB HBM3 Nvidia driver version: 535.161.08 cuDNN version: Probably one of the following: /usr/lib64/libcudnn.so.8.9.7 /usr/lib64/libcudnn_adv_infer.so.8.9.7 /usr/lib64/libcudnn_adv_train.so.8.9.7 /usr/lib64/libcudnn_cnn_infer.so.8.9.7 /usr/lib64/libcudnn_cnn_train.so.8.9.7 /usr/lib64/libcudnn_ops_infer.so.8.9.7 /usr/lib64/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True

CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 224 On-line CPU(s) list: 0-223 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8480CL CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 56 Socket(s): 2 Stepping: 7 CPU max MHz: 3800.0000 CPU min MHz: 800.0000 BogoMIPS: 4000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities L1d cache: 5.3 MiB (112 instances) L1i cache: 3.5 MiB (112 instances) L2 cache: 224 MiB (112 instances) L3 cache: 210 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-55,112-167 NUMA node1 CPU(s): 56-111,168-223 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected

Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.21.2 [pip3] torch==2.2.0 [pip3] torch_cluster==1.6.3+pt22cu121 [pip3] torch-geometric==2.3.1 [pip3] torch_scatter==2.1.2+pt22cu121 [pip3] torch_sparse==0.6.18+pt22cu121 [pip3] torch-spline-conv==1.2.2 [pip3] torchaudio==2.2.0 [pip3] torchdata==0.7.1 [pip3] torchmetrics==0.11.4 [pip3] torchvision==0.17.0 [pip3] torchviz==0.0.2 [pip3] triton==2.2.0 [pip3] tsne-torch==1.0.1 [conda] numpy 1.21.2 pypi_0 pypi [conda] torch 2.2.0 pypi_0 pypi [conda] torch-cluster 1.6.3+pt22cu121 pypi_0 pypi [conda] torch-geometric 2.3.1 pypi_0 pypi [conda] torch-scatter 2.1.2+pt22cu121 pypi_0 pypi [conda] torch-sparse 0.6.18+pt22cu121 pypi_0 pypi [conda] torch-spline-conv 1.2.2 pypi_0 pypi [conda] torchaudio 2.2.0 pypi_0 pypi [conda] torchdata 0.7.1 pypi_0 pypi [conda] torchmetrics 0.11.4 pypi_0 pypi [conda] torchvision 0.17.0 pypi_0 pypi [conda] torchviz 0.0.2 pypi_0 pypi [conda] triton 2.2.0 pypi_0 pypi [conda] tsne-torch 1.0.1 pypi_0 pypi

rusty1s commented 6 months ago

There exists indeed a few molecules which cannot be parsed correctly. For now, I simply skip them in https://github.com/pyg-team/pytorch_geometric/pull/9318.