For a very similar reason, suppress top-level directory symlink creation for all shared libraries from nvidia.cu* packages to fix Unable to load any of {libcudnn_engines_precompiled.so.9.1.0, libcudnn_engines_precompiled.so.9.1, libcudnn_engines_precompiled.so.9, libcudnn_engines_precompiled.so} and RuntimeError: CUDNN_BACKEND_TENSOR_DESCRIPTOR cudnnFinalize failed cudnn_status: CUDNN_STATUS_NOT_INITIALIZED errors when trying to use ultralytics package with torch-based model. See https://github.com/pyinstaller/pyinstaller/issues/8758
Add a hook for ultralytics package to ensure that its config .yaml files are collected (and collect source .py files in case a JIT-based model is used).
Fix issues with run-time discovery of collected CUDA/cuDNN libraries on linux when using
torch
and/ortensorflow
.Use the symlink suppression mechanism from https://github.com/pyinstaller/pyinstaller/pull/8761 to suppress creation of top-level directory symlinks for
libtensorflow_cc.so.2
,libtensorflow_framework.so.2
, and_pywrap_tensorflow_internal.so
fromtensorflow
package. These symlinks causetensorflow
to mis-identify its location, and cause it to search for CUDA libraries in wrong directories. See https://github.com/pyinstaller/pyinstaller-hooks-contrib/pull/676#issuecomment-1866440960For a very similar reason, suppress top-level directory symlink creation for all shared libraries from
nvidia.cu*
packages to fixUnable to load any of {libcudnn_engines_precompiled.so.9.1.0, libcudnn_engines_precompiled.so.9.1, libcudnn_engines_precompiled.so.9, libcudnn_engines_precompiled.so}
andRuntimeError: CUDNN_BACKEND_TENSOR_DESCRIPTOR cudnnFinalize failed cudnn_status: CUDNN_STATUS_NOT_INITIALIZED
errors when trying to useultralytics
package withtorch
-based model. See https://github.com/pyinstaller/pyinstaller/issues/8758Add a hook for
ultralytics
package to ensure that its config .yaml files are collected (and collect source .py files in case a JIT-based model is used).