Open slumnitz opened 6 years ago
Hi Stefanie!
I was trying to develop some plotly's functions based on the splot native functions. I think I managed to develop the scatterplot offline for either in the terminal and for jupyter notebooks.
Did you work on some of your ideas of this issue? I've heard that there's some interactivity already implemented in splot, but I couldn't find yet.
An example of a plotly scatterplot function would be:
import pandas as pd
import pysal as ps
from libpysal.weights.contiguity import Queen
import geopandas as gpd
import numpy as np
from dfply import * # dplyr functon (mask, select, group_by, etc.)
from esda.moran import Moran, Moran_Local
import plotly.offline as offline
from plotly.offline import init_notebook_mode
csv_path = ps.examples.get_path('usjoin.csv')
usjoin = pd.read_csv(csv_path)
years = list(range(1929, 2010))
cols_to_calculate = list(map(str, years))
shp_path = ps.examples.get_path('us48.shp')
us48_map = gpd.read_file(shp_path)
us48_map = us48_map[['STATE_FIPS','geometry']]
us48_map.STATE_FIPS = us48_map.STATE_FIPS.astype(int)
df_map = us48_map.merge(usjoin, on='STATE_FIPS')
# Making the dataset tidy
us_tidy = pd.melt(df_map,
id_vars=['Name', 'STATE_FIPS', 'geometry'],
value_vars=cols_to_calculate,
var_name='Year',
value_name='Income')
# Function that calculates Per Capita Ratio
def calculate_pcr(x):
return x / np.mean(x)
# Establishing a contiguity matrix for a specific year. It is the same for all years.
W = Queen.from_dataframe(us_tidy[us_tidy.Year == '1929'])
W.transform = 'r'
# Function that calculates lagged value
def calculate_lag_value(x):
return ps.lag_spatial(W, x)
us_tidy['PCR'] = us_tidy.groupby('Year').Income.apply(lambda x: calculate_pcr(x))
us_tidy = us_tidy.assign(Income_Lagged = us_tidy.groupby('Year').Income.transform(calculate_lag_value),
PCR_Lagged = us_tidy.groupby('Year').PCR.transform(calculate_lag_value))
y = (us_tidy >>
mask(us_tidy.Year == '1929') >>
select(us_tidy.PCR))
moran = Moran(y, W)
moran_loc = Moran_Local(y, W)
#########################################
# PLOT MORAN OR LOCAL MORAN SCATTERPLOT #
#########################################
def plotly_moran_scatterplot(moran_loc, # PySAL Moran or Local-Moran object
zstandard = True,
reference_lines = True, # Horizontal and Vertical lines
jupyter = False, # If user is running in a jupyter notebook
marker_size = 5,
marker_color = 'blue',
fit_line = True, # Fit regression line
line_width = 1.5,
line_color = 'red'):
if(zstandard == True):
Var = moran_loc.z
if(zstandard == False):
Var = moran_loc.y
VarLag = ps.lag_spatial(moran_loc.w, Var)
if(fit_line == True):
b,a = np.polyfit(Var, VarLag, 1)
fit_line_data = {'x': [min(Var), max(Var)],
'y': [a + i * b for i in [min(Var), max(Var)]],
'mode': 'lines',
'line': {'width': line_width,
'color': line_color}}
else:
fit_line_data = {}
if(reference_lines == True):
h_line_data = {'x': [min(Var), max(Var)],
'y': [Var.mean(), Var.mean()],
'mode': 'lines',
'line': {'width': 1,
'color': 'gray'}}
v_line_data = {'x': [VarLag.mean(), VarLag.mean()],
'y': [min(VarLag), max(VarLag)],
'mode': 'lines',
'line': {'width': 1,
'color': 'gray'}}
else:
h_line_data = {}
v_line_data = {}
fig = {
'data': [
{
'x': Var,
'y': VarLag,
'mode': 'markers',
'marker': {'size': marker_size,
'color': marker_color},
'text': moran_loc.p_sim},
fit_line_data,
h_line_data,
v_line_data
],
'layout': {
'xaxis': {'title': 'Original Variable',
'showgrid': False,
'zeroline': False},
'yaxis': {'title': 'Lagged Variable',
'showgrid': False,
'zeroline':False},
'showlegend': False,
'title': 'Moran Scatterplot'
}
}
if(jupyter == False):
plotly_fig = offline.plot(fig)
if(jupyter == True):
init_notebook_mode(connected=True)
plotly_fig = offline.iplot(fig)
return plotly_fig
# Example
plotly_moran_scatterplot(moran_loc,
zstandard = False,
reference_lines = True,
marker_size = 5,
marker_color = 'blue',
fit_line = True,
line_width = 2.5,
line_color = 'red'
)
Answering the question how and which interactive package to integrate or not to integrate into
splot
Idea and Experiment collection in order to decide on:
splot
andPySAL
functionality could/ should be supported interactively in futureTo get a clear idea on what is possible and how a future integration could look like, I suggest to undertake experiments designing API's and assessing what is possible with alternative packages. I will therefore test different packages generating the
esda.moran.Moran_Local
(scatterplot, LISA map, Choropleth map) andgiddy.directional
(heatmap, LISA maps, rose plot)) visualisation. I am aiming for an API design that is as close as possible to thematplotlib
API. This will help to provide an insight into whether or not it is viable to use aset_backend('package')
option, to quickly change backend packages or not.I am testing under the assumption that interactive backends are used for the exploration of data and statistical results, not necessarily for publishing in a paper (we have the
matplotlib
interface for this). Therefore I will limit the options to customise visualisations to a minimum. I would suggest to ideally make the interactive backend a default or if not possible provide an additional method for PySAL objects.plot_interactive()
, since interactive plotting could provide an attractive alternative to interfaces commonly used in the geographic sphere (software packages like GRASS, ArcMaps...).Interactive visualisation packages:
JavaScript
based and I am not familiar withJavaScript
)Testing criteria:
matplotlib
API (without too much effort)?Possible outcomes:
matplotlib
functionality (widgets, masking options, ...)set_backend('bk')
optionResults